Registration No:

Total Number of Pages : 02 B.Tech
210 210 210 210 210 210 210 210 PECI5402

7th Semester Back Examination 2018-19 GROUND WATER HYDROLOGY BRANCH : CIVIL

> Time: 3 Hours Max Marks: 70 Q.CODE: E352

Answer Question No.1 which is compulsory and any FIVE from the rest.

The figures in the right hand margin indicate marks.

Logarithmic, Semi-logarithmic, Natural graph sheets are to be supplied.

Q1 Answer the following questions :

(2 x 10)

- a) Explain storativity for an unconfined aquifer.
- **b)** Differentiate between aquitard and aquifuge.
- c) What is perched aquifer?
- **d)** State the Darcy's law and its validity.
- e) Find the well discharge for steady radial flow to a well penetrating fully a confined aquifer.
- f) What is the concept of image well?
- g) How the recovery test is done?
- h) Show in a diagram, the basic well drilling tools for cable tool method.
- i) What is philosophy of electrical resistivity method?
- j) Explain the recharge mound.

A 40 cm well was pumped at a rate of 2000lpm for 200 minutes and drawdown in an observation well 20 m from the pumping well was 1.51 m. The pumping was stopped and the residual drawdowns during recovery in the observation well for 2 hours are given in the following table. Determine the aguifer constants S and T.

Time since pumping stopped	Residual dr <u>aw</u> down	Time since pumping ² stopped	Residual ₂₁₀ drawdown ₂	
(min)	(m)	(min)	(m)	
3	0.66	70	0.145	
10	0.42	80	0.14	
20 210	0.31	210 90	210 0.135	
30	0.24	100	0.13	
40	0.2	110	0.13	
50	0.16	120	0.13	
60	0.15			
210	210	210	210 2	

210	210	210	210	210	210	210		210
	Q3 a) b)	Explain and draw the s A discharging well is s one image well and di stream boundary.	situated near a	stream bounda	ry. Locate the po		(5) (5)	
210	Q4 ²¹⁰ a) b)	Explain different types Explain law of times to			figures. ²¹⁰	210	(5) (5)	210
	Q5 a) b)	Explain in detail about laboratory method of finding hydraulic conductivity by Constant head method Falling head method						
210	Q6 a) 210 b)	State the justification of A 25cm well penetrate pumping at the rate of 48 hours the drawdow coefficients of aquifer. time will the drawdown	nours of one of one of the orange of the orange	(5) (5)	210			
	Q7	Explain the seismic refraction method to find the depth of topmost aquifer.						
210	Q8 ²¹⁰ a) b) c) d)	Write short answer of Method of artificial rec Evaluation of ground with Image well Step-Drawdown	harge of ground	210 water.	210	210	(5 x 2)	210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210