Reg	gistration No :				
Total nui	mber of pages : 02	210	210	210	₂₁₀ B.Tec
210	7 th Se	mester Regula			PCE7J00
	. 33	_	ECHNOLOG'		
			CH : CHEM		
			: 3 Hours larks : 100		
010	010	0.00	DF · F147	010	010
Answer	Question No.1 (Pa	rt-I) which is o	compulsory,	any EIGHT fr	om Part-II, and any
	The figure	TWO fr s in the right-h	om Part-III.	indicato mar	·ke
	Assume suitable no		_		
-		ver all parts of	•		
		ь	a4 I		
210	Short Answer Type	010	<u>art – I</u> swer All TEN)	210	210
Q1	Answer the following	ng questions :	•		(10 x 2
a)	"Green chemistry is a				
b) c)	Identify the 6 R's poi What is green engine			nace?	
d)	Enumerate the four p			pass :	
e)	Discuss any two use				
f) 210.	What do you mean b			210	210
² 'g) h)	What is PEG and me Define supercritical f		a?		
i)	What do you mean b		ation biofuel?		
j)	What is process inte				
			art – II		
	Focused-Short An TWELVE)	swer Type Qı	uestions(Ansv	wer Any EIG	HT out of
Q2 210	Answer the following	questions:	210	210	²¹⁰ (6 x 8)
a)	Why does industry n	eed Green chen			
b)	What is Green tec	hnology? What	are the maj	or applications	s of Green
c)	technology? What is Green eng	ineering? Write	down the tv	velve principle	s of Green
-,	engineering.	,			
d)	Explain the benefits		istry' to humar	n health, enviro	onment, and
2161	economy & business		o following tu	vo routoo?(ib.)	orogonoo of
21 e)	Ethanol may be sy catalysts):	nulesized by un	ie ioliowing tw	o routes = (iii p	resence or
		$q) \rightarrow 2C_2H_5OH(a)$	aq) + 2CO ₂ (g)		
	ii) $C_2H_4(g) + I$	$\ddot{H}_2O(g) \rightarrow \dot{C}_2H_5\dot{C}$	OH(I)		
	a. What is the % at				athanal :-
	b. Which route is to your opinion? Give it			production of	etnanoi in
		Cascins of your	ariowci.		
f)	What is Nano-catalys		applications of	of Nano-catalvs	ts?

i) What is supercritical fluids and supercritical CO ₂ ?What are its advantages? j) What is scale-up effect? Explain the classification of scale-up effect. k) Define 'Process intensification'. Enlist design considerations for process intensification and characteristics of an intensified process. Explain the different processes of thermo chemical conversion of biomass into fuel. Part – III Long Answer Type Questions (Answer Any TWO out of FOUR) What is Green chemistry? Elaborate the twelve principles of Green chemistry (16)	210
Long Answer Type Questions (Answer Any TWO out of FOUR) Q3 What is Green chemistry? Elaborate the twelve principles of Green chemistry (16)	210
with two examples of each.	210
Elaborate the statement "Microwave heating as a greener technology". (16) Explain the principle of microwave heating along with the reactors that are used in microwave irradiation.	
What are Green solvents? Why ionic liquids are considered as replacement for conventional organic solvents? What are the recovery methods for regeneration of ILs?	
Q6 ²¹⁰ Explain aboutrenewable ² energy resources? Explain in ²¹⁰ details about ²¹⁰ (16) bioconversion of renewable.	210
210 210 210 210 210 210 210	210
210 210 210 210 210 210 210 210 210	210
210 210 210 210 210 210 210 210 210	210
210 210 210 210 210 210 210	210