	210	210	210	210	210	210				
R	egis	tration No :								
Tota		umber of Pages : 02				B.Tech				
	210	²¹⁰ 7 th Se	210 mester Back	210 Examination	210 2018-19	PEEC5414				
				ONTROL SYS	-	_				
		BRANCH : AE		E, EIE, ELEC ⁻ :3 Hours	FRICAL, ETC, IEE					
			Max M	Marks : 70						
		Answer Question No.		DE : E269 ompulsorv ar	nd any Five from	the rest.				
	210				indicate marks.	210				
Q1		Answer the following questions : (2 x 10								
	a) b)	•								
	c)	What do you mean by p	ole-zero cance	ellation in transt	er function ?					
	d) 2 ² f)	Why aliasing occurs in o Write down Sylvester's	evnancion the	arem	-	210				
	[–] f)	If a 3 rd order system r $\lambda_1, \lambda_1, \lambda_3$, then write do	natrix A is in o wn the modifie	companion forr ed Vander mon	n & its eigen value de matrix for A.	es are				
	g)	Define direct method Lia	apunov stability	у.		nto in				
	h)	Explain how a point in the S-plane.		·						
	i)	Distinguish between the stability.		•	•	-				
	210	What are the phenomer in a linear system?	na exhibited by	y a non-linear s	system that are not 210^{10}	found ₂₁₀				
Q2	a)	Calculate $\phi(k,m)$ for the	system $\phi(k+1)$	$=\begin{pmatrix} -1 & 2\\ 0 & 1 \end{pmatrix} x(k)$	using z-transform.	(5)				
	b)	State Liapunov's theore Hence show the followir			ne system <i>x</i> ≒A x	(5)				
				$\begin{bmatrix} 1 \\ -a \end{bmatrix}_{210}^{1}$						
	210	ls asymptotically stable	if a>0, k>0.	<i>u</i> ²¹⁰	210	210				
Q3	a)	Find $\phi(t,\tau)$ and forced r	esponse of the	e system $t^2\ddot{\eta} + t\dot{\eta}$	$\dot{\eta} + \eta = \rho(t)$	(5)				
	b)	with $\eta(t_0) = \eta_0$ and $\dot{\eta}(t_0) = \dot{\eta}_0$								
	b)	limit cycle.	em snown, dei	termine the arr	iplitude and freque	ncy of (5)				
	210					210				
		R(s) -	± ⊢	$G(s) = \frac{1}{(0,1)}$	10 C	(s) ➡				
		¥		(0.45	(2s+1)					
		•								
	210	210	210	210	210	210				

0 210 210 210 210 210 210 210

210

210		210	210	210	210	210	210	210
	Q4	a)	Check the controllabi	•	bility for the follow $\int_{t}^{t} u = \begin{pmatrix} 0 & e^{-t} \end{pmatrix}$	• •	(5)	
210		2 b)	Solve the following d $x(k + $		h by the use of Z- 2x(k) = 0, $x(0)$		d ²¹⁰ (5)	210
	Q5	a)	A unity feedback co function $G(Z) = \frac{0.42}{z^2}$ crossover points usin	$\frac{26K(z+0.847)}{-1.607z+0.607} \cdot D$	ystem has an op etermine the valu			
210		2 b ;)	Obtain the state varia with phase variables resolvent and state t	able representation as state variable	2		iation, ₂₁₀ (5) o find	210
	Q6	a)	With $R_1 = 5M\Omega$, $R_2 = 1$	$0M\Omega, C_1 = 0.5\mu F,$	$C_2 = 0.1 \mu F$ re	epresent the sys	em in (5)	
210		210	state space form. 210			^10	210	210
210	Q7	²¹⁰ b)	Find A^{-1} using the C Consider a second o of equilibrium points, or asymptotically stal unstable focus (e) ce	rder autonomous classify whether ole: (a) stable no	s system. For eac the equilibrium p	ch of the following point is stable, un	ı typrs (10) stable	210
210		210	Justify your answer u		aits ₂₁₀	210	210	210
	Q8	a) b) c) d)	Write short answer Bilinear transformation Liapunov's stability of State observer Jump resonance	on of stability ana	lysis		(5 x 2)	
210		210	210	210	210	210	210	210
210		210	210	210	210	210	210	210

210 210 210 210 210 210 210 210 2⁻