
Registration No : Total number of pages : 02 210 210 210 210 210 210 210	
Total number of pages : 02 210 210 210 210 210 210 210 210 210	
210 210 210 210 210 210 210 PCI 5 th Semester Regular/Back Examination 2018–19 CHEMICAL REACTION ENGINEERING	
210 210 210 210 210 210 210 PCI 5 th Semester Regular/Back Examination 2018–19 CHEMICAL REACTION ENGINEERING	
5 th Semester Regular/Back Examination 2018–19 CHEMICAL REACTION ENGINEERING	3.Ted
CHEMICAL REACTION ENGINEERING	
Time : 3 Hours	
Max Marks: 100	
Q.CODE: E484	
Answer Question No.1 (Part-I) which is compulsory, any EIGHT from Part-II and	any
TWO from Part-III.	
The figures in the right-hand margin indicate marks.	
Assume suitable notations and any missing data wherever necessary.	
Answer all parts of a question at a place.	
Part – I	
Short Answer Type Questions (Answer All TEN)	0 44
Q1 210 Answer the following questions: 210 210 (2	2 X 1(
a) Name different ways of defining the rate of reaction.b) For non-elementary reactions, there is a difference between order and	
stoichiometric coefficients. Justify the statement.	
c) Draw a plot showing the temperature dependency of rate.	
d) Whenever we have to use CSTRs in series, the overall economic consideration	
would always recommend the use of equal size CSTRs in series. Why so?	
e) What is the significance of Damkohlernumber?	
f) A high concentration of reactant favours the reaction of higher order. Comment on the statement.	
g) Differentiate between CSTR and batch reactors.	
h) Write the design equation for steady-state mixed flow reactor.	
i) Phosphine decomposes when heated according to the reaction: 4 PH_3 (g) \rightarrow P_4	
(g) + 6 H2 (g).	
At a given instant, the rate at which phosphine decomposes is 2.4x10 ⁻³ mol/l.s.Express the rate in three different ways, using differential notation and	
210 show the relationship between them. 210 210 210 210	
j) What is Oswald's isolation method?	
Part – II	
Focused-Short Answer Type Questions(Answer Any EIGHT out of TWELVE) Q2 Answer the following questions: ((6 x 8
a) Compare transition state theory with collision theory.	(0
b) A gas A, decomposes irreversibly to form a gas C as per the reaction: A \rightarrow	
210 2C.The decomposition of A is first order reaction which is carried out in ano	
isothermal constant pressure batch reactor. Derive an expression for the volume	
of the system as function of time. Assume that the reacting gases behave ideally.	
c) With suitable examples explain in details the variable and constant volume reactors.	
d) Explain the basics of non-ideal flow.	
e) Explain the relationship between the F and E curves.	
f) The concentrations of a compound undergoing chemical change were 5.72, 3.23,	
₂₁₀ and 1.96 at the times 0, 20, ₂ and 50 min from the commencement of reaction, ₁₀	
Suggest about its order of reaction.	

