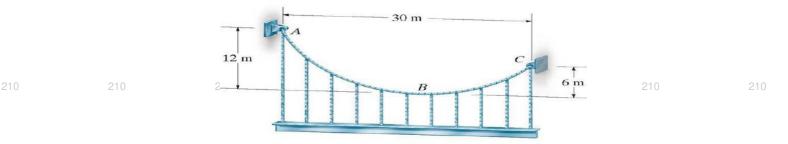

	210	210	210	210	210	210	210
F	Regi	stration No :					
	•						
Tot	al Ni	umber of Pages : 03					B.Tech
101	210	210	210	210	210	210	PCI5I101210
		5 th Sem	nester Regular /				
			STRUCTURA		6 - II		
				CH: CIVIL :3 Hours			
				arks : 100			
_				DE : E380			
Ar	ISWe	r Question No.1 (Par	t-1) which is cor from	npulsory, an Part-III.	y EIGHT from Pa	rt-ll and a	any TWO ₂₁₀
		The figu	res in the right h		indicate marks.		
			Р	art- I			
Q1		Short Answer Type Q	uestions (Answei	r All-10)			(2 x 10)
	a)	Define carry over mom	ent and distributior	n factor.			
	b)	How do you account fo	or sway in slope det	flection method	d for portal frames?	210	210
	c)	Define Rotation factor.	210 Apation the d			210	210
	d) e)	What are cable structure Give the range of cen		• •		ning the	
	0)	tension T in the cable.				ing the	
	f)	What are the different r	methods of analysi	s of indetermin	ate structures?		
	g)	Write the element flexit	bility matrix for a tru	uss member &	for a beam element		
	h)	Define shape factor.	c 010; -	010	010	010	010
	2 i) 0 i)	Define plastic modulus What are unsymmetric	•	210 are they apply	210	210	210
	j)		al frames and now	are they allaly	zeu :		
				rt- II			
Q2	-)	Focused-Short Answ		-	-	-	(6 x 8)
	a)	A beam ABC, 10m lor loaded as shown in Fi	•				
	210	beam has constant El 1		210	210	210	210
			5 kN	8 kN			
		IA	↓ B	. T	CI		
			3 + 2 +	El constant	2.5		
	b)	Analyse the continuou	is beam shown in	Fig by mome	nt distribution meth	od The	
	210	beam is of uniform sec		ng by mome		ou. 2100	210
				,−30 kl	N/m		
			10 kN/m	mmm			
		A	6 m	$A = \frac{1}{B}$ A m	finit C		
		24		2	~		
	210	210	210	210	210	210	210


210 21	10 2	210
--------	------	-----

210	210	210	210	210	210	210	210

c) Analyse the beam as shown in Fig. by kani's method.

- **d)** A two hinged parabolic arch of span 20 m and rise 4 m is loaded with a uniformly distributed load of 100 kN/m over the left half of the span and a concentrated load of 80 kN at the midpoint of the right half of the arch. Calculate the horizontal reaction at a section just to the right of concentrated loads.
- e) The cable supports a girder₂which weighs 12kN/m. Determine the tension in₂the cable at points A, B & C.

- f) A suspension cable is supported at 2 points 25m apart .The left support is 2.5m above the right support. The cable is loaded with a uniformly distributed load of 10kN/m throughout the span. The maximum dip in the cable from the left support is 210 4m.Find the maximum and minimum tensions in the cable.
- **g)** Analyze the continuous beam shown in figure below. Assume EI is constant. Use matrix flexibility method.

210

210

- - -

A 40 kNA $5m \rightarrow 4 5m \rightarrow 5m \rightarrow 5m \rightarrow 5m \rightarrow 5m$

210

h) Compare flexibility method and stiffness method.

i) A two span continuous beam ABC is fixed at A and C and rests on simple support

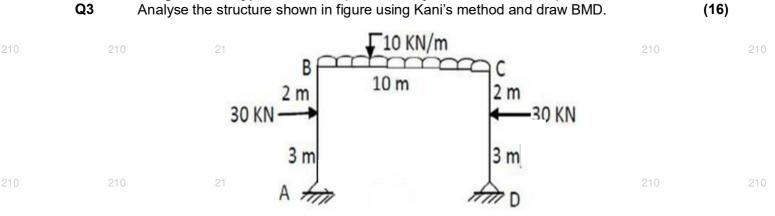
210 at B. All the three supports are at same level. The span AB=4.5m and span BC=6.3m. The span AB carries a uniformly distributed load of 48kN/m and span BC carries a central point load of 75kN. El is constant for the whole beam. Find the moments at all the support Using stiffness method.

- **j)** Derive the shape factor for a Triangular section.
- k) Explain the lower and upper bound theorem.
- I) List out the assumptions made for plastic analysis.

10	210	210	210	210	210	210	210

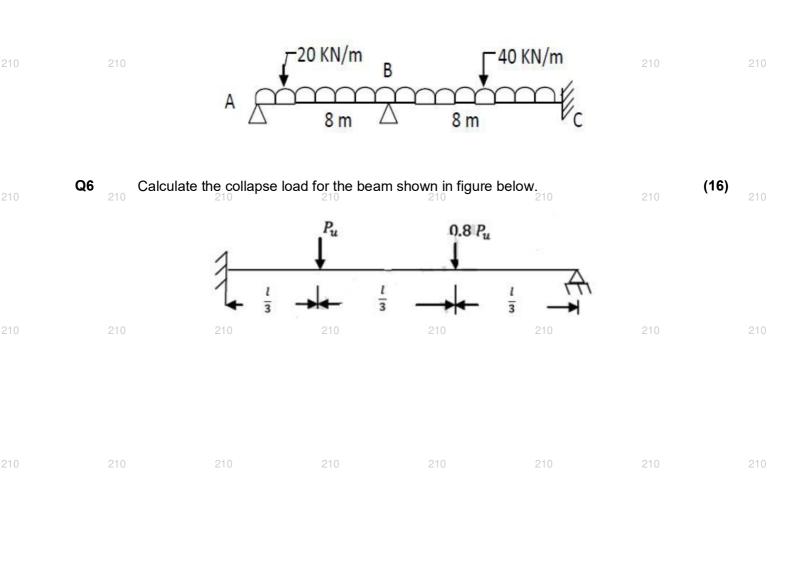
210

210


210

210

210



Part-III Long Answer Type Questions (Answer Any TWO out of FOUR) Analyse the structure shown in figure using Kani's method and draw BMD.

	Q4	A two hinged parabolic arch of span 30m and rise 6m carries a uniformly distributed load of 20kN/m covering a distance of 12m from left end. Find the horizontal thrust			
)	210	and the reactions at the two supports. Also calculate the maximum hogging moment in the arch.	210		

Q5 Analyse the beam shown in figure using flexibility matrix method if the support B' (16) sinks by 50 mm. E = 25X103 MPa, $I = 140X103 \text{ cm}^4$.

