Regis	tration No :				
210	210	210	210	210	210
Total n	umber of pages	s : 03			B.Tech PCE5J002
					F GE 33002
210	210		larks 2100	210	210
	sume suitable r	.1 (Part-I) whic and any TV es in the right-	VO from Part-I hand margin in any missing da	ll. ndicate marks ita wherever n	
210	210	210	210 Part – I	210	210
	Short Answer	Type Questions		N)	
Q1	Answer the fol	lowing question	IS :		(10x2)
a)	Write the transp	oort equation.			
b)	Differentiate be	tween lumped an	d distributed mo	del.	
c)	What is phase of	equilibrium?	210	210	210
d)	Define global o	ptima.	210	210	210
e)	Write the disad	vantages of Gold	en section searc	h method.	
f)	Define activity of	coefficient.			
g)	Write the assur	nptions for energy	y equation.		
h)	Define process	simulator.			
i)	Define the com	ponents of an info	ormation diagram	1 .	010
210 j)	What are the so	oftwares used for	simulation?	210	210
		P	Part – II		
		t Answer Type C		ver Any EIGHT	out of
	TWELVE)				
Q2	Answer the fol	lowing ² question	IS: 210	210	²¹ (8x6)
a)	Write the differe	ent steps for the f	ormulation of a n	nodel.	
b)	Explain the cor a neat sketch.	nponent continui	ty equation of a	plug-flow reacto	r with
c)	Write the comp	oonent continuity		•	batch

210	210	d)	Consider a syst affects the flow system, assum hydrostatic liqui	rate of t ing the⊵₁	ank 1. D flow rate	evelop a	mathem	natical mo	del for the	e	210
210	210		F1 210	h1, A		h2,		F3 210		210	210
		e) f) g) h)	Write the stepw Write the design Determine the s of the root using Write the mathe	n equatio square ro Newton	dure for n of flash ot of 28 Raphso	Golden s n drum wi for the co n methoo	section so ith prope orrection d.	earch me r assump of 4 deci	tions. mal places	5	
210	210	i)	Solve the follow Max $Z=X_1+X_2+3$ subject to, $3X_1+2X_2+X_3=$ $2X_1+X_2+2X_3=$ $X_1, X_2, X_3 \ge 0$	ring LPP ₂₁ 3X₃ ≤3				210		210	210
210	210	j) k) I)	Explain differen Explain Wegste A manufacturing experience indi demand for ne product on the b	in's meth g compar cates the xt 10 da	iod. ny keeps e daily de ays. Find	s stock of emand a I the dai	s given	below. Si	mulate the	e	210
			Daily demand	5	10	15	20	25	30		
0.4.0			Probability	0.01	0.2	0.15	0.5	0.12	0.02	0.4.0	
210	210		210	21		210		210		210	210
210	Q3 210		Long Answer T An isothermal i constant volume patterns indicat in figure should are constant, we	rreversib e reactor es that a l approxi	estions (le reaction . The mixe two tanl mate the	on $A \xrightarrow{k_1}{\to} B$ king is no k system e imperfe	takes in t perfect with bac ct mixing	a liquid . Observa ck mixing g. Assum	phase in a tion of flov , as showr	v า	210
			F, C _{A0} , ρ ₀	V ₁ , C _A ρ ₁	F+F ρ ₁	V ₂ , ρ ₂	С _{л2} ,	F, C _{Λ2} , ρ	2		
210	210		210	21	0	210		210		210	210

210	Q4 210	assumptions and	ematical model of d design equations	210	210	210	210
	Q5	where the resist fluid can be rep both sides of the	athematical model ance to heat trans presented by conv e heat transfer wal e wall has finite hea	fer from a co vective heat I. Assume tha	ndensing fluid to i transfer coefficien	nner t on	
210	Q6	Encode _{l 0} the foll matrices	lowing ₂ information	n floy₁₀diagra	am with ₂₁ the follo	wing ₂₁₀	210
			3 Distilla	4 Distille r.1.m	5 Distills	5	
210	210	210	cclumn l	cclum 2	solunn C	210	210
		l		t ll Scpar stor			
210	210	 a) Process i b) Stream c c) Incidence d) Adjacence e) Recycle s 	onnection matrix e matrix cy matrix	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210	210	210	210	210	210	210	210

210 210 210 210 210 210 210 210 210