210	210	210	210	210	210	210	210
	Registr	ation No :					
	Total N	umber of Pages	: 02	i		B. PCMT	Tech 4301
210	210	210	BRANCI Tim Max	210	EAT TRÉÄTMEN	210	210
			on No.1 which is	compulsory	and any five fro		
010	010		•	-	n indicate marks		010
210	210 Q1	210 Answer the follo	210 wing questions :	210	210	210 (2 x	210 (10)
	a) b)	The Clausius-Cla The hardenability (A) decre (B) increa (C) increa	peyron equation is of steels decrease ase in dislocation ase in solutionising ase in strength ease in grain size	es with density		(2 x	. 10)
210	210 C)		isomorphous syst	em of phase dia	agram is <u>210</u>	210	210
210	d) e) ²¹⁰ f)	critical region foll quenched steel s (A) fully marter (C) martensite In a slowly coole ferrite is approxim (A) 43.0 Identify the state metals and alloys (A) It is mech recrystalli	owed by instant w heet consists of ensite e + pearlite d 0.4%C plain can nately 210 (B) 49.46 ment that precisely anical deformation sation	(B) proeutecto (D) martensite bon steel, the (C) 53. y describes the carried out abo	percentage of proe	re of the site eutectoid 57.0 orking of e of	210
		(C) It is mech temperatu	anical deformation		ove the annealing	010	010
210	210 g) h) i) 210 j)	(D) It is mech temperatu Calculate the rat the nucleation eq Calculate the int energy = 56.4 KJ Draw a BCC unit What should be t sites in this BCC Estimate the ca	anical deformation in of the surface e uation at the critical erfacial energy C /mol, a = 3.61 A°, A cell and show the he jump length for structure?	energy term to al condition u having interfa At. Wt = 63.55 g positions of ar interstitial atom n of the steel	octahedral interst s occupying the oc exhibits a micros	v term in e (Bond titial site. ctahedral	210
	Q2 a)	What is anneali	-	s aims? Discu	rite. Iss the different f ges and the aims	••	5)
210	210 b)				cess of martemperion the microstruct		5) 210

210	210	210	210	210	210	210	210
		martempered and auster	mpered steels co	nsists of ? what a	are limitations		
	Q3 a)	Discuss the influence properties of cast iron. (A			the structure a	and (5)	
	b)	Explain why activation energy for the	energy for the gr		fusion is lower th	nan (5)	
210	210	210	210	210	210	210	210
	Q4 a)	Find out the size of the of solid formed is a cube (T				iny (5)	
	b)	Explain with schematic r lower bainite?	nicrostructure the	e difference betw	een upper bainite	e& (5)	
210	Q5 a) 210	Do you expect any differ Al just quenched from 6					210
	b)	to room temperature? Ex The diffusivity of gallium	kplain.		-		
		at 1300°C. Determine D ₀ diffusivity at 1200°C.	and Q_d for diffus	ion of gallium in s	silicon and calcul		
	Q6 a)	C = 0.4%, Mn = 0.7, P	= 0.04, S = 0.04	, Si = 0.3, Ni =			
210	210	0.25, and ASTM grain s and oil. What severity of					210
	b)	3" in diameter? (A) Compare gray, malle composition and heat characteristics.					
	Q7 a)	What is precipitation har					
210	210 b)	of precipitation hardenin Gibbs free energy (G) vs Explain in details the diff eutectoid steel?	. composition (X)) curve for the abo	ove transformatio	on.	210
	Q8	Write short answer on	any TWO :			(5 x 2)	
	a) b)	Sub Zero treatment Patenting					
210	210 C) d)	Cast Irons	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210 210	210	210	210	210	210	21
---------	-----	-----	-----	-----	-----	----