210			210	210	210	210	210	210	210				
	Re	gist	ration No :										
						· _ · _ ·							
210	Tota	al Nu	Imper of Pa	ages : ₂ 02	210	210	210	210 HS	B.Tech ₁₀ SM3302				
	5 th Semester Regular Examination 2018-19												
	OPTIMIZATION IN ENGINEERING BRANCH : AEIE, AUTO, CHEM, CIVIL, CSE, ECE,												
	EEE, EIE, ELECTRICAL, ENV, ETC, FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH, MARINE, MECH, METTA, MINERAL, MINING, MME, PLASTIC, TEXTILE												
210			210	210		3 Hours larks : ² 70	210	210	210				
			A now	or Question N	Q.COE	DE : E077	any five from t	the reat					
	Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.												
	Q1			e following que					(2 x 10)				
210		a) b)	Define Unb	ar Programming ounded Solutior	n?	210	210	210	210				
210		c) d)			e? How does it dif lem. How it differ f			210	210				
		e) f)	Write the m	athematical forr	n of an Assignmer tion to solve optim	nt problem.	·						
		g)	What are th	e basic charact	eristics of queuein	g phenomena?	aiving oxemple i	n aaab aaaa					
		h) i)	What is inte	eger programmi	•	raint optimization	i giving example i	n each case.					
210		j)	210	ange's multiplie	210	210	210	210	210				
	Q2	a)			oys 5 skilled men a del and an ordin				(5)				
					by a skilled man -hour work by a s								
			rules,no ma	an can work me	ore than 8- hours LPP for this man	per day.The pro	ofit of the deluxe	model is Rs.					
210		h)	volume of e	ach model such	that the total prof	it is maximized.	210	210	(5) ²¹⁰				
		5,	U 1	ze $Z=x_1+2x_2+3$ $2x_1x_2+x_3 \ge 4$	0				(0)				
				x ₁ +x ₂ +2x ₃ ≤8									
				x₂-x₃≥2 x₁,x₂ and x₃≥0									
010	Q3	a)	-	ty to solve the f	· · · · · · · · · · · · · · · · · · ·	040	010	010	(5)				
210			Subject to	ze Z =2x₁+x₂ x₁+2x₂≤10	210	210	210	210	210				
				x ₁ +x ₂ ≤6 x ₁ -x ₂ ≤2									
		b)	Solve the fo	x₁, x₂≥0 bllowing NLPP b	y using Kuhn-Tuc	ker condition.			(5)				
		,		$x = 3x_1^2 + 14x_1x_2 + 3x_1 + 6x_2 \le 72$	$3x_2^2$. /				
210			210	$x_1, x_2 \ge 0.$	210	210	210	210	210				

210 210 210 210 210 210 210

210

	210	210	210	210	210	210	210	210
--	-----	-----	-----	-----	-----	-----	-----	-----

a) Solve the Following LPP by using Lagrangian Method. Maximize $Z = 2x_1^2 - 3x_2^2 + 18x_2$ Subject to $2x_1 + x_2 = 8$ Q4

 $x_1, x_2 \ge 0.$

(5) ₂₁₀ b) Find the Initial basic feasible solution of the following transportation problem by Vogel's Approximation method.

(5)

Stores/warehouse	S₁	S ₂	S ₃	S ₄	Availability
Α	6	1	9	3	34
В	11	5	2	8	15
C	10	12	41	7	12
D	85	35	50	45	19
Demand	21	25	17	17	010

10	Q5	a) b)	The arrival rate of breakdown machines at a maintance shop follows Poisson distribution with a mean of 4 per hour. The service rate of machines by a maintance machines by a maintance machine also follows Poisson distribution with a mean of 3 per hour. The down time cost per hour of a breakdown machines is Rs. 200. The labour rate per hour is Rs. 50. Determine the optimal number of maintance mechanics to be employed to repair the machines such that the total cost is minimized. 210 210 210 210								
	Q6	a)	$F(x)=(100-x)^{2} \text{ over } 60 \le x \le 150, \text{for n=5.}$ Solve the following problem using the projected gradient method: Minimize Z=16(x ₁ - 2x ₂) ² +(x ₁ -2) ² Subject to x ₁ +2x ₂ =8								
		b)	Using I	Hungarian meth	nod,solve the	e following co	ost minimizing	g assignment pi	roblem;		(5)
10			210	Job/person	Α	210 B	²¹⁰ C	D 210	E	210	210
				1	30	38	40	28	40	-	
				2	40	24	28	21	36		
				3	41	27	33	30	37		
				4	22	38	41	36	36		
			·	5	29	33	40	35	39		
10	Q7		$\begin{array}{cccccccccccccccccccccccccccccccccccc$							210	(10) ²¹⁰
10	Q8	a) b)	5 5			210	210	210		210	(5 x 2) _{≥10}
		C)	M/M/I model in queueing theory								
		d)	Quadra	auc Programmi	ıg						
10			210	210		210	210	210		210	210