Tot	al Nı	ımber of Pages	s : 03				B.Tecl	
	210	210	210	210	210	210 PN	1E5J10 ²	
		5	th Semester Regula	ar / Back Exami	nation 2018-19			
				ION IN ENGINE	ERING			
				ANCH : MECH				
				me : 3 Hours				
				x Marks: 100 CODE : E235				
Ar	iswe	r Question No.	ع. 1 (Part-1) which is	compulsory, ar	nv EIGHT from	Part-II and an	v TWO	
,	210	210	fi (1 are 1) 11210 fi	rom Part-III.	210	210	,	
		Th	e figures in the rig	ht hand margin	indicate marks) <u>.</u>		
Q1		Short Answer T	Type Questions (Ans	Part- I			(2 × 10	
QΙ	a)		sible solution and op		PP		(2 x 10	
	b)		occur in transportati					
	c)		sic characteristics of			210		
	d)		fference between sim					
	e) f)		ween Fibonacci and o matical form of an as					
	g)		nitations of Sensitivity		•			
	h)		onacci search method		tial search method	1 .		
	i)		ar programming?					
	j)	Explain how ma	aximization problem	of NLPP can be	solved by using	Kuhn-Tucker		
	210	210	210	210	210	210		
				Part- II				
Q2	۵)		Answer Type Ques				(6 x 8	
	a)	A farmer has 500 acres of land on which we can grow paddy, wheat or soybeans. Each acre of paddy costs Rs. 1000/- for preparation, requires 7 man-days of work and						
		yields a profit of Rs.300/.Each acre of wheat cost Rs1200/Each acre of soya bean						
			or preparation, requi					
	210		farmer has Rs.1,00,0					
		Formulate LPP model to allocate the number of acres to each group to maximize the total profit.						
	b)	•						
	•	problem? What are the advantages of duality?						
	c)	•	olex method, solve LP	P:				
		Maximize Z = Subject to	$-3X_1 - 2X_2$ $X_1 + X_2 \ge 1$					
		•	$X_1 + X_2 \le 7$					
	210	210	$X_1 + 2X_2 \ge 10$	210	210	210		
			$X_2 \leq 3$					
	d)	Using Simplex n	$X_1, X_2 \ge 0$ nethod, solve the follo	wing LPP				
	ω,	Maximize Z =	$3X_1 + 2X_2 + 5X_3$	wing Li i .				
		Subject to	$X_1 + 2X_2 + X_3 \le 430$					
		,	20 1 20 / 260					
		,	$3X_1 + 2X_3 \le 260$					
	210	210	$X_1 + 2X_3 \le 200$ $X_1 + 4X_2 \le 420$ $X_1, X_2, X_3 \ge 0^{10}$	210	210	210		

e) Solve the following Non-Linear Programming Problem by using Lagrangian multipliers

Maximize Z = $10 X_1 + 4X_2 - X_1^2 + 4X_1X_2 - 5X_2^2$ Subject to $X_1 + X_2 = 0$

Subject to $X_1 + X_2 = 0$ $X_{1}, X_2 \ge 0$.

Solve the following integer programming problem using branch-bound method:

Minimize $Z = 3x_1 + 4x_2$ Subject to $7x_1 + 16x_2 \le 52$ $3x_1 - 2x_2 \le 18$

 $x_1, x_2 \ge 0$ and x_1, x_2 are integers.

g) Solve the following using the projected gradient method;

Minimize Z = $25(x_1-3x_2)^2+(x_1-3)^2$

Subject to $x_1 + 2x_2 = 9$ $x_1, x_2 \ge 0$

h) Find the initial basic feasible solution to the following transportation problem by using Least cost Method.

Destination/source	D_1	D_2	D_3	D_4	D_5	Supply
S ₁	10	2	16	14	10	300
S ₂	6	18	12	13	16	500
S ₃	8	4	14	12	10	825
S ₄	14	22	20	8	18	375
Demand	350 10	400	² 250	150 ²¹	^U 400	210

i) Find an optimal solution to an assignment problem with the following cost matrix:

Job/person	Α	В	С	D
1	2	10	9	7
2	15	4	14	8
3	13	14	16	11
4 210	4 ²¹⁰	15 ²¹⁰	13 ²¹⁰	9 210

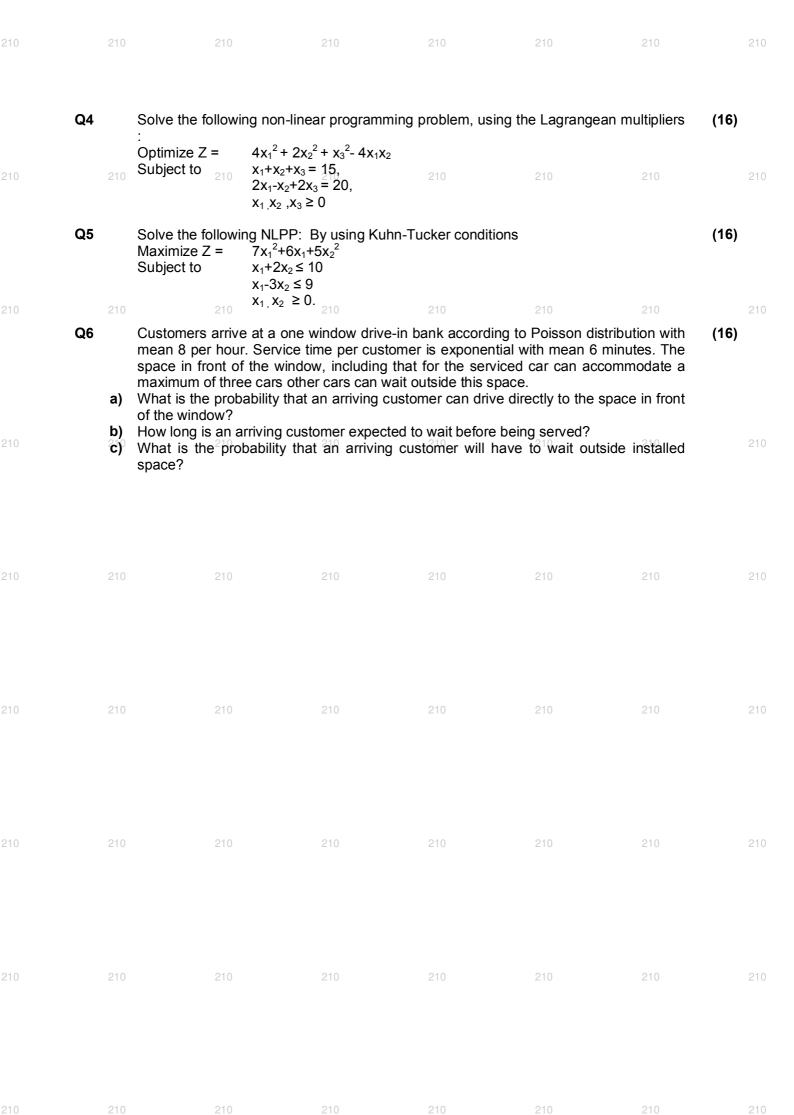
- j) Consider a single server queuing system with Poisson input, exponential service times. Suppose the mean arrival rate is 6 calling units per hour, the expected service time is 0.125 hour and maximum permissible calling units in the system is two. Derive the steady-state probability distribution of the number of calling units in the system, and then calling units in the system, and then calculate the expected number in the system.
- k) Solve the following LPP ,by using Big-M method

Maximize $Z = 4x_1+5x_2-3x_2$ Subject to $x_{1+}x_2+x_3 = 10$ $x_1-x_2 \ge 1$ $2x_1 + 3x_2 + x_3 \le 40$

 $2X_1 + 3X_2 + X_3 \le 40$ $X_1, X_2, X_3 \ge 0$.

I) Give the mathematical formulation of an assignment problem. How is it solved by the Hungarian method?

Part-III


Long Answer Type Questions (Answer Any TWO out of FOUR)

Using Revised Simplex method to solve the following LPP (16)

Maximize $Z = 6x_1-2x_2-3x_3$ Subject to $2x_1-x_2+2x_3 \le 2$ $x_1-3x_3 \le 4$

 $x_1 - 3x_3 \le 4$ $x_1, x_2, x_3 \ge 0$

210 210 210 210 210 210 210

