210		210	210		210		210		210	210	210
	F	Regi	stration No :								
	Tota	al Nu	umber of Pages	: 03							B.Tech
210		210	210	h o	210		210		210		L5H001 ²¹⁰
			5		Ti	ΓΙΟΝ ΙΙ RANC ime:3	N ENGIN H : EEE 3 Hours			9	
							rks: 100 E : E222				
210	An	swe	r Question No.1	(Part-1)	which is	s comp	oulsory,	any ElG	ዓዟ <u></u> fron	n Part-II and an	y TWO 210
			The	figuros	in the rig	-	art-III.	in indic	ato marl		
				e ingures	in the ny	-	•			N 3.	
	Q1	Part- I Q1 Short Answer Type Questions (Answer All-10)									
	Q .	a)	Define Basic feas	sible solut	tion and op	otimal s	olution of				(2x10)
210		b) C)	Can degeneracy occur in transportation problem? Justify your answer. What are the basic characteristics of queueing phenomena? 210 210 210							210	
		d) Write any two difference between simplex and dual simplex method.									
		e) Differentiate between Fibonacci and golden section search methods.f) Write the mathematical form of an assignment problem.									
	 g) What are the limitations of Sensitivity Analysis? h) Explain why Fibonacci search method is called sequential search method. 									od	
		i)	What is non-linea	ar progran	nming?		•				
210		j) 210	Explain how ma condition. 210	iximizatior	n problem	of NL	PP can b	e solve	d by usir 210	ng Kuhn-Lucker	210
		LIU	210		210	Par			210	210	
	Q2	a)	Focused-Short A farmer has 50 Each acre of pac yields a profit of costs Rs.800/-fo	00 acres o Idy costs Rs.300/.I r prepara	of land on Rs. 1000/- Each acre ation, requ	stions- which for pre of whe	(Answer we can geparation, eat cost R man-days	grow pao requires ts1200/ s of wor	ddy, whea 7 man-d Each acr k and yi	at or soybeans. ays of work and re of soya bean elds a profit of	(6x8)
210		210	Rs.300/lf the fa Formulate LPP r total profit.	nodel to a	allocate the	e numb	er of acre	es to eac	h group t	to maximize the	210
		b) What is duality theory? What are the rules to form a dual problem from primal problem? What are the advantages of duality?									
		c)	Using dual Simpl Maximize Z = Subject to	ex metho -3X ₁ - 2X X ₁ + X ₂	X ₂	PP:					
210		210	210	$X_1 + X_2 = X_1 + 2X_2$ $X_1 + 2X_2$ $X_2 \le 3$	₂ ≥ 10		210		210	210	210
		d)	Using Simplex m	$X_1, X_2 \ge$ wethod, so		owing l	_PP:				
		,	Maximize Z = Subject to	3X ₁ +2X X ₁ + 2X ₂		•					
210		210	210	$X_1 + 4X_2$ X_1, X_2, X_3	<u>s</u> ≤ 420		210		210	210	210

210 210 210

210	210	210	210	210	210	210	210

e) Solve the following Non–Linear Programming Problem by using Lagrangian multipliers $10 X_1 + 4X_2 - X_1^2 + 4X_1X_2 - 5X_2^2$ Maximize Z = $X_1 + X_2 = 0$ Subject to

$$X_{1,}X_{2} \ge 0.$$

- f) Solve the following integer programming problem using branch-bound method:

Subject to $7x_1 + 16x_2 \le 52$ $3x_1 - 2x_2 \le 18$ $x_1, x_2 \ge 0$ and x_1, x_2 are integers.

9

 $3x_1 + 4x_2$ ²¹⁰

Solve the following using the projected gradient method;

Minimize Z =
$$25(x_1-3x_2)^{2(+)}(x_1-3)^2$$

Subject to $x_1+2x_2 = 9$

Minimize Z[⊥]

g)

x₁,x₂≥0 Find the initial basic feasible solution to the following transportation problem by using h) Least cost Method.

Destination/source	D ₁	D ₂	D ₃	D ₄	D ₅	Supply
S ₁	10	2	16	14	10	300
S ₂	6	18	12	13	16	500
S ₃	8	4	14	12	10	825
S ₄ 210	14 210	22	2010	8 21	o 18	375 210
Demand	350	400	250	150	400	

i) Find an optimal solution to an assignment problem with the following cost matrix:

Job/person	Α	В	С	D
1	2	10	9	7
2	15	4	14	8
3 210	13 ²¹⁰	14 210	16 ²¹⁰	11 ²¹⁰
4	4	15	13	9

- Consider a single server queuing system with Poisson input, exponential service j) times. Suppose the mean arrival rate is 6 calling units per hour, the expected service time is 0.125 hour and maximum permissible calling units in the system is two. Derive the steady-state probability distribution of the number of calling units in the system, and then calling units in the system, and then calculate the expected number in the system.
- k) Solve the following LPP ,by using Big-M method :
 - Maximize Z = $4x_1 + 5x_2 - 3x_2$ Subject to $x_{1+}x_2+x_3 = 10$ $x_1 - x_2 \ge 1$ $2x_1 + 3x_2 + x_3 \le 40$ $x_1, x_2, x_3 \ge 0$.
- (a) Give the mathematical formulation of an assignment problem. How is it solved by the Hungarian method?

		Long Answer T	ype Questions (Ans	Part-III wer Any TWO ou	t of FOUR)		
	Q3	Maximize Z =	Simplex method to solv $6x_1-2x_2-3x_3$	ve the following LF	р		(16)
10	210	Subject to 210	$2x_{1}-x_{2}+2x_{3}\leq 2$ $x_{1}-3x_{3}\leq 4$ $x_{1}x_{2},x_{3}\geq 0$	210	210	210	210

210	210		210	210	210	210	210	210
210	Q4 210	multipliers: Optimize Z = Subject to	-	: 15, ₃ = 20,	ning problem,	using the Lagr	angean (16)	210
	Q5	Solve the fol		y using Kuhn-Tu 5x2 ² 0		210	(16)	
210	Q6 ₂₁₀ a) b)	mean 8 per space in from maximum of What is the p of the window How long is a	hour. Service tin nt of the window three cars other probability that a w? an arriving custo	indow drive-in ba ne per customer v, including that f cars can wait ou in arriving custon omer expected to	is exponential wi for the serviced outside this space. her can drive dire wait before being	ith mean 6 minut car can accomm octly to the space g served?	es. The odate a in front	210
210	C) 210	space?	210	an arriving cust	210	210	210	210
210	210	2	210	210	210	210	210	210
210	210	2	210	210	210	210	210	210
210	210	2	210	210	210	210	210	210
210	210	2	210	210	210	210	210	210