	Registratio	on No :					
Tota	al Number o	f Pages : 03					Fech
	210	AE	Time : Max M Q.COI	HANICS OF S H : MECH : 3 Hours arks : 100 DE : E570	OLIDS	210 PME5	2
An	210 210	210	1) which is con 210 from	Part-III.	210	art-II and any T	WO 2
		The figure	es in the right h	and margin in	dicate marks.		
Q1	a) State t	•••	estions (Answe		in design and	•	x 10)
	machin						
	 b)₂₁₀State th c) What d d) What is e) What is f) State th g) Discuss h) Why traces 	the strain displace o you mean by place Lame's equation the significance he advantages of the octahedral s apezoidal cross s	ment relation of C lane strain and pl n and state its sig of hydroststic and compounding thi shear stress and s ection of hook is	ane stress condi nificance. d deviator stress ck cylinder and i shear strain preferred over re	? ts applications?	210	
	 b)₂₁₀State th c) What d d) What is e) What is f) State th g) Discuss h) Why training i)₂₁₀What d 	ne strain displace o you mean by pl Lame's equation the significance ne advantages of the octahedral s apezoidal cross s o you mean by st	ment relation of C lane strain and pl n and state its sig of hydroststic and compounding thi shear stress and s	ane stress condinificance. d deviator stress ck cylinder and i shear strain preferred over re on factor?	tion? ? ts applications?		
Q2	 b)₂₁₀State th c) What d d) What is e) What is f) State th g) Discuss h) Why trating i)₂₁₀What d j) State th 	the strain displace o you mean by place the significance the significance advantages of the octahedral s apezoidal cross s o you mean by st he difference betw ed-Short Answe the differential	ment relation of C lane strain and pl n and state its sig of hydroststic and compounding thi shear stress and s ection of hook is tress concentratic ween Lamina and	ane stress condinificance. d deviator stress ck cylinder and i shear strain preferred over re on factor? Laminates? art- II s- (Answer Ang	tion? ? ts applications? ctangular section 210 y Eight out of Tv	n? 210 velve) (6	
Q2	 b)₂₁₀State th c) What d d) What is e) What is f) State th g) Discuss h) Why training i)₂₁₀What d j) State th 	the strain displace o you mean by place the significance the significance advantages of the octahedral s apezoidal cross s o you mean by st he difference betw ed-Short Answe the differential	ment relation of C lane strain and pl n and state its sig of hydroststic and compounding thi shear stress and s ection of hook is tress concentratic ween Lamina and P r Type Question	ane stress condinificance. d deviator stress ck cylinder and i shear strain preferred over re on factor? Laminates? art- II s- (Answer Ang	tion? ? ts applications? ctangular section 210 y Eight out of Tv	n? 210 velve) (6	2 x 8)

The bend ABC carries a concentrated load P vertical at point A. Find the vertical and horizontal deflection at point A.

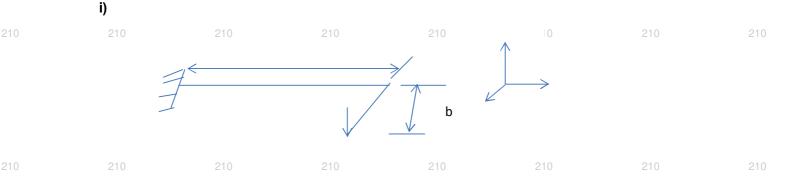
- c) State and proof the Castiglino theorem?
- d) State the yield criterion as given by Tresca and Von-Mises and represent these criteria in two dimensional stress space.

2

210

210

210


210	210	210	210	210	210	210	210

- e) A steel shaft (σ_0 =750MPa) is subjected to a static load consists of bending moment 20KNm and torsional moment of 60KNm.Use factor of safety of 1.5.Determine the shaft diameter based on (i) Tresca stress theory (ii) Von-Mises theory. Assume data if any.
- f) At a point in a body the stress tensor is given by: $\begin{pmatrix} 80 & 25 & -40 \end{pmatrix}$

$$\sigma_{ij} = \begin{pmatrix} 30 & 25 & 40 \\ 25 & -40 & 35 \\ -40 & 35 & 60 \end{pmatrix} MPa$$

(i) Determine the principal stresses and maximum shear stress.

- (ii) Hydrostatic and deviator stress. 210 210 210 210 g) A cantilever beam of 2000mm span having rectangular cross section of depth 80mm is subjected to a transverse load at its free end that fluctuates between 800N download to 2KN upword. Determine width of beam. Take σ_{yp} =300MPa f_e=250MPA FS=2.25
- h) State and explain the Maxwell's reciprocal theorem.

The bend wire is loaded as shown in the figure, determine the translation and rotation of the end A about x,y and z axes using energy method.

- **j)** Derive the stress strain relation for a classical laminate and represent the stress strain variation ina laminate?
- k)₂₁₀Briefly explain the inter laminar stresses in alaminated composite?
 - I) Derive the Winkler Bach formula for a curved beam.

Part-III

Q3	$ \begin{array}{l} \sigma_x = C[y^2 + v \ (x^2 - y^2], \ \sigma_y = C[x^2 + v \ (y^2 - x^2], \ \sigma_z = C[v \ (x^2 + y^2], \ \tau_{xy} = -2 \ C \ vxy \ , \ \tau_{yz} = \tau_{zx} = 0 \\ \mbox{Body forces are 0, C is a constant and v is poission's ratio. State} \\ a) \mbox{Are the equation of equilibrium is satisfied.} \\ b) \mbox{Are the compatibility equations are satisfied.} \\ c) \mbox{Is it a feasible solution.} \end{array} $	(16)	
Q4	A crane hook has a symmetrical trapezoidal section 56mm deep, the inner and outer widths being 50mm and 25mm respectively. Estimate the extreame intensities of stress when hook carries a load of 12.5KN, the load line passing 50mm from the 210 inside edge of the section and the center of curvature being in the load line. 210	(16)	

210

21

210

210

210

)

210

_ 10

210	210	210	210	210	210	210	210

- Q5 The internal and external diameters of a thick cylinder are 400mm and 600mm respectively. It is subjected to an external pressure of 5N/mm². Find the internal pressure that can be applied if the maximum permissible stress is limited to 14.5 N/mm². Sketch the variation of Hoop stress and radial stress across the cylinder.
 210What will be the change in thickness of the cylinder if E =2.1x10⁵ N/mm² N/mm² and Poisson's ratio=0.3.
 - **Q6** Compute and show the shear flow on the thiion in Fig., if the vertical load is 5660N, **(16)** locate the position of the shear center.

			4cm				
210	210	210	<>	210	210	210	210
			0.1cm				
210	210	210_	210		210	210	210

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210