	210	210	210	210	210	210	2
F	Regi	stration No :					
Tota	al Nu	umber of Pages : 0	2			Р	B.Tech ET5J001
	210		emester Regula			8-19 210	
	210	FIBE	R OPTICS & OI			CES	
				CH : ECE, El ne : 3 Hours			
				Marks : 100			
				ODE : E307			
An	swe	r Question No.1 (P	•	om Part-III.	any EIGHT f	rom Part-II and ar	
	210	² The fig	gures in²the righ		in indicate [®] n	narks. 210	
Q1		Short Anowar Tun	Questions (Ana	Part-I			(2×10)
Q1	a)	Short Answer Type Define MFD.? How	•	•			(2 x 10)
	b)	Find the capacity of	a channel that op		n 6 MHz to 8 I	MHz, having signal-	
	c)	to-noise ratio 40 dB. Draw the schematic		r drawing anna	ratus		
	d)	What are the differe	-			dal dispersion?	
	e)	What is transparence	y value? What are	its significance	e in modulatior	n response of ILD?	
	f)	A p-n photodiode responsivity at this v	vavelength.	-		2µm.Calculate the	
	g) h)	Compare and contra What is meant by p ⁺		e and edge em	nitting LEDs.		
	i)	What is quantum lim	it? How the sensit				
	j) 0	What is the differen amplifier is most sui				lifier? Which optical	
				Part- II			
Q2	a)	Focused-Short Ans Differentiate betwee					(6 x 8)
	,	multimode fiber. Dra	w the schematic c	liagram to repr	esent the struc	tural comparison of	
	b)	conventional single Define the normali			•		
	210	determination of the	number of guided	modes propag	ating within a	step index fiber.	
		A step index fiber in 1.45 and a core dia					
		when light at a wave				1 2	
		guided modes propa	0 0		. file anitle a	and notice index.	
	C)	A 20 km optical link of 1.48 and a relativ				ore refractive index	
	210	i. the delay diff	erence between the	ne slowest and	fastest modes	at the fiber output;	
	210		e broadening due n bit rate that ma			antial errors on the	
		link assumin	g only intermodal of	dispersion;			
	4)	iv. the bandwidt With suitable schem	h–length product o			laser in comparison	
	d)	with the Fabry–Péro					
	e)	Discuss the various		or coupling imp	provement.		
	2 f) 0	What are principal d	lesign requirement	s of a good co	nnectors?2Brie	efly explain different	
		types of connector.	for the SNR of bot				

210	210	210	210	210	210	210	21
	h)	A digital optical fibe requires a maximum l	r communication pit-error-rate of 10	system operati ⁻¹⁰ . Determine:	ng at a waveler	ngth of 1 μm	
10	210	of the detector ii. the minimum i the above bit-	quantum limit at and the energy on ncident optical po error-rate when th nd assuming the d	f an incident pho wer required at f e system is emp	oton; the detector in ord	der to achieve	21
	i)		tocurrent when th	-		-	
0	210 j)	ii. the rms quant	of optical power um noise current i , when the mean of Raman-Nath n	photocurrent is t	he signal.	0 MHz 210	21
10	210 k) I)	A typical acoustic- piezoelectric crystal b in water. The velocity the cell is 1 cm. if a H angle between the fin for water = 1_233) Write the various amp semiconductor optica A SOA has uncoated device has an active	onded to the cell of the acoustic w e-Ne laser beam(st order diffracted ²¹⁰ blifier structures an I amplifier, derive facet reflectivene	generates acous vave in water is $\lambda = 633$ nm) is in 1 beam and the 210 nd their correspond the small-signal ss of 20% and a	stic wave of frequent 1490 ms ⁻¹ and the incident on the cell direct beam. (Re 210 onding operating in gain per unit leng a single pass gain	ency 5.2 MHz e thickness of , calculate the fractive index ²¹⁰ regions. For a th. n of 5 dB. The	21
0	210	gain wavelength of 1. spectral bandwidth of Long Answer Type (55 μm. Calculate the amplifier.	the refractive inc	dex of the active r		21
Q3	3 a) b)	Explain the concept waveguide. Discuss theory in a planar wa fiber. What are the criteria materials.	t of electromagn the modifications aveguide in order	etic modes in that may be m to describe opti	relation to a p nade to electroma cal propagation in	agnetic mode n a cylindrical	(16)
⁰ Q4	4 a) b) c)	Derive the threshold of	the gain coefficien an allowed length	nt of a semicond of the active re	gion for single m	ode operation	(16) ²¹
Q5	5 a) b) ²¹⁰ c)	What are the basic re Draw and compare the avalanche photo diod Is it possible to re semiconductor?	e. 210 e.	nd characteristic	s of p-n diode, p- 210	210	(16) 21
Qe	6 a) b) c)	Describe in detail the Discuss the EDFA are Find the maximum po	chitecture.		λ.		(16)