	210	210	210		210		2	210		210	2
F	Regis	tration No :		· · · · ·	1	I		I I I	I		
	U										
То	tal Nu	umber of Pages : 02	<u> </u>								B.Tech
	210	210 th	Semester I	Dook	E v ²¹⁰ :	o o ti o m	20402	210		210 P	CEL4302 2
		5	ELECTR					19			
			BRANCH		•		CAL				
					3 Hou arks:						
		Answer Question N			E : E2		d anv	FIVE f	rom th	ne rest	
	210		es in the rig		-	-	-			210	2
Q1		Answer the following	g questions :	1							(2 x 10)
	a)					on of th	ree pha	ase alte	ernators	3.	
	b) c)	Write two applications									
	d)	Find the slip of a 4-po 1460 rpm.	le three phas	e indu	iction m	otor wi	th 50 F	lz supp	ly, runi	ning at	
	21 e)	Draw the phasor diag		nt-pol	e synch	ronous	motor	operat	ing at f	ull-load	2
	f)	with lagging power fac Why salient pole cons		ected	for turb	o alterr	ator?				
	g)	what is short circuit ra	tio(SCR)?					in a nai	vorovo	tom	
	h) i)	Delta-delta and Zig-za What are Synchronou							ver sys	dem.	
	j)	A 400/200V transform be its value when it is				.02 p.u	ı on its	LV side	e . wha	t would	
~~	210	210	210		210		-	210		210	2
Q2	a)	Describe the e.m.f. r regulation of a synchro						rminati	on of	voltage	(5)
	b)	A 3-phase, star conne the open circuit and s									(5)
		load percentage voltage			-	-					
				10	00	05	20	10	50		
	210	Field current I _f (A)	210	10 80	20 150	25 176	30 200	10 40 235	50 260	60 275	2
		Open circuit line vol Short circuit armatur	• • • •	0	0 200	0 250	0 300	0	0	0	
			e current (A)		200	250	300				
Q3	a) b)	Explain Blondel's two A 400V,50Hz, delta-co) and a	(5) (5)
		q-axis reactance of 0.	07Ω. The arr								(-)
	210	i. Find the exc	s lag p.10. citation emf n	eglect	210 ing salie	ency ar	2 nd assu	iming X	ζ _s =Χ _{d.}	210	2
		ii. Find the exc	citation emf ta	aking i	nto acc	ount the	e salier	ncy.			
Q4	a)	Describe the Scott co									(5)
		phase transformers. connected transforme	•	e out	put of	each	with a	three	phase	e delta	
	b)	A three phase transf	ormer 33/6.6				•				(5)
	210	secondary resistance Calculate the second									2

210	210	210	210	210	210	210	21

What do you mean by V curves and inverted V curves? What are causes & effect of it?	(5)	
A three phase, salient pole 2300v, 150KW,1000rpm, syn. Motor has Xd = 32Ω , Xq = 20Ω per phase. Calculate the torque developed if δ = 160, Eb = 2V and neglecting losses. 210 210 210 210 210 210 210 A 100kVA, 11000V,3-ph,Y-connected syn. motor has an effective armature resistance & reactance per phase of 3.5Ω &40 Ω respectively. Determine the induced emf& angular retardation of the rotor when fully loaded at i. Unity p.f ii. 0.87p.f(lagging)	(5)	210
III. 0.875p.f(leading)		
	(5)	210
	(5)	
A 3-ph,Y-connected syn. motor takes $20kW_1$ at 400V from the mains. The syn. reactance is 4Ω & the effective resistance is negligible. If the exciting current is so adjusted that the back emf is 550V,calculate the line current and P.f of the motor.	(10)	210
Write short answer on any TWO :	(5 x 2)	
Explain briefly Reluctance torque of a cylindrical pole synchronous motor. Neatly draw the phasor diagram of a Syn. motor for lagging, unity & leading p f &	(-)	
Why parallel operation of alternators are required? Give the necessary conditions		210
Explain in details the advantages of Two bright and one dark lamp method over all dark/bright lamp method for syncronisation of an alternator with infinite bus.		
	of it? A three phase, salient pole 2300v, 150KW, 1000rpm, syn. Motor has Xd = 32 Ω , Xq = 20 Ω per phase. Calculate the torque developed if δ = 160, Eb = 2V and neglecting losses. 210 210 210 210 210 A 100kVA, 11000V,3-ph,Y-connected syn. motor has an effective armature resistance & reactance per phase of 3.5 Ω &40 Ω respectively. Determine the induced emf& angular retardation of the rotor when fully loaded at i. Unity p.f ii. 0.87p.f(lagging) iii. 0.875p.f(leading) Derive and Explain torque slip characteristic of a three phase IM at running condition. A 4 pole,3-phase ,50Hz,27.5 KW inductionmotor is running at full load at 1440 rpm. The star connected rotor has a resistance and a standstill reactance of 0f 0.3 Ω and 2 Ω respectively. The emf between slip ring at stand still is 240 V. Find the induced emf in each rotor phase at full load condition , rotor impedance per phase and rotor current anfp.fassuming the slip rings are short circuited A 3-ph,Y-connected syn. motor takes 20kW, at 400V from the mains. The syn. reactance is 4 Ω & the effective resistance is negligible. If the exciting current is so adjusted that the back emf is 550V, calculate the line current and P.f of the motor. Write short answer on any TWO : Explain briefly Reluctance torque of a cylindrical pole synchronous motor. Neatly draw the phasor diagram of a Syn. motor for lagging, unity & leading p f & hence derive the expression for rotor angle(δ). Why parallel operation of alternators. Explain in details the advantages of Two bright and one dark lamp method over all	of it? A three phase, salient pole 2300v, 150KW, 1000rpm, syn. Motor has Xd = 32 Ω , Xq = 20 Ω per phase. Calculate the torque developed if δ = 160, Eb = 2V and neglecting losses. 210 210 210 210 A 100kVA, 11000V,3-ph,Y-connected syn. motor has an effective armature resistance & reactance per phase of 3.5 Ω &40 Ω respectively. Determine the induced emf& angular retardation of the rotor when fully loaded at i. Unity p.f ii. 0.87p.f(lagging) iii. 0.875p.f(leading) Derive and Explain torque slip characteristic of a three phase IM at running condition. A 4 pole,3-phase, 50Hz,27.5 KW inductionmotor is running at full load at 1440 rpm. The star connected rotor has a resistance and a standstill reactance of 0f 0.3 Ω and 2 Ω respectively. The emf between slip ring at stand still is 240 V. Find the induced emf in each rotor phase at full load condition , rotor impedance per phase and rotor current anfp.fassuming the slip rings are short circuited A 3-ph,Y-connected syn. motor takes 20kW at 400V from the mains. The syn. reactance is 4 Ω & the effective resistance is negligible. If the exciting current is so adjusted that the back emf is 550V,calculate the line current and P.f of the motor. Write short answer on any TWO : Explain briefly Reluctance torque of a cylindrical pole synchronous motor. Neatly draw the phasor diagram of a Syn. motor for lagging, unity & leading p f & hence derive the expression for rotor angle(δ). Why parallel operation of alternators. Explain in details the advantages of Two bright and one dark lamp method over all

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210	210	210	210	010	210	210	010
210	2 I U	2 I U	<u> </u>	≤ 10	2 I U	<u> </u>	210