		210 210	210	210	210	210
	R	egistration No :				
ota	al Nu	umber of Pages : 02 210 210	210	210	210	B.Tech 2 PME5I001
			ester Regular / Ba			
			DESIGN OF MAC	HINE ELEMEN		
			BRANCH Time : 3			
			Max Mar			
An	swe	r Question No.1 (Part	Q.CODE which is comp		IGHT from Part-	ll and any TWO
		210 210	from P	art-III.	210	210
		The figur	es in the right ha	nd margin ind	icate marks.	
Q1		Short Answer Type Q	Par uestions (Answer A			(2 x 10)
-	a)	What are the fits and to	olerances?			, , , , , , , , , , , , , , , , , , ,
	b) c)	What is the difference what is notch sensitivit	w2		04.0	040
	d)	Name the three commo	only used types of co			ods. 210
	e) f)	What are the advantag What is endurance limi		ver riveted joints	6	
	g)	What is distortion energy		?		
	h)	The ball bearings are u		nich materials?		
	i) j)	What is the material us What is nipping in a lea				
		210 210	²¹⁰ Par	210 t- II	210	210
Q2	-)	Focused-Short Answe		(Answer Any I	Eight out of Twelv	/e) (6 x 8)
	a) b)	Classify the engineerin What are the factors af		e limit.		
	C)	Explain the Flexible co	upling			
	d)	Write short note on m theory.	haximum shear stre	ss theory verse	s maximum strair	energy
	e)	Derive the Goodman's		210	210	- 210
	f)	What is an eccentric ri joint?	iveted joint? Explain	the method add	opted for designing	g such a
	g)	Design a sleeve and c				the joint
		are made of the same $\sigma_t = 60 \text{ MPa}$; $\tau = 70 \text{ MI}$		•	stresses :	
	h)	Describe, with the he	elp of neat sketche		f various shaft c	ouplings
	i)	mentioning the uses of Design a knuckle joint		he design stress	ses may be taken :	25
	-	² 75 MPa in tension, 60 I	MPa in shear and 15	0 MPa ³ in compr	ession. ²¹⁰	210
	j)	How are the keys class their applications.	sified? Draw neat sk	etches of differe	ent types of keys a	nd state
	k)	What are the different t				
	I)	Prove that in a spring				
		having same length an two springs are directly				
		two springs.	210	210	210	210
		210 210	210			<1U

210			210	210	210	210	210	210		210
210	Q3		A hot rolled clockwise to section vari no keyway The materia Take the er	d steel shaft is o 110 N-m co ies from 440 N is present at al has an ultim ndurance limit	Par stions (Answer A s subjected to a to unterclockwise an N-m to – 220 N-m the critical sectio nate strength of 55 as half the ultimat	ny Two out of I prsional moment d an applied be . The shaft is of n. Determine the 0 MN/m ² and yie	that varies from nding moment at uniform cross-se e required shaft eld strength of 41	a critical ction and diameter. 0 MN/m ² .	(16)	210
210	Q4		Design a de boiler shell joint efficie	ouble riveted t 1.5 m in diam ncy as 75%, a	sh factor of 0.62. outt joint with two neter subjected to allowable tensile s ear stress in the riv	a steam pressur stress in the pla	re of 0.95 N/mm ² .	Assume	(16)	210
210	Q5		r.p.m. from 1.35. The for Shear stres Crushing st Shear stres	an electric mo ollowing permi is for shaft, bo		or. The service f ay be used :		sumed as	(16)	210
210	Q6	a) b)	Design a s The spring of turns is shear stres A ball bear hours at 14	oring for a bala is to be enclos 30. The mode s induced. ing subjected 50 r.p.m. with so that it can	ance to measure (sed in a casing of ulus of rigidity is to a radial load o a reliability of 99 be selected from	25 mm diameter 85 kN/mm ² . Als of 5 kN is expec %. Calculate the	The approximate co calculate the r ted to have a life dynamic load ca	e number naximum e of 8000 apacity of	(8) (8)	210
210			210	210	210	210	210	210		210
210			210	210	210	210	210	210		210
210			210	210	210	210	210	210		210

210 210	210	210	210	210	210	210
---------	-----	-----	-----	-----	-----	-----