
10		2	10	210	210	210	210	210	210
		Re	gistration N	o :					
	Tota	al Nu	umber of Pa	ges : 03				B.T PET5	ech 1101
10	An		r Question		CŌNTF BRANO Tim Max Q.C	/ Back Examir ROL SYSTEMS CH : ECE, ETC e : 3 Hours Marks : 100 ODE : E499 ompulsory, an		210 Part-II and any TV	210
10			10		fro	m Dort III	indicate ²¹⁰	-	210
10	Q1	c) ₂ d) e) f) g) ₂	Differentiate and sensitivity Write down in What do you systems? Explain the of Write at lead criterion. The closed lead the damping What is the argument. Why auxiliar	er Type Q between th ty. the analogy u mean by effect of add st two limit coop transfe ratio of 0.5 drawback y equation	uestions (Answine open-loop and terms in Force- impulse respon- ding a zero to a tations of each er function is giv polar plotothat is required in Ro	Part- I ver All-10) d closed-loop system voltage for transl nse of a system 2^{nd} order under-d of the Routh's s en by $T(s) = \frac{s+}{Ks^2+}$	Stem in response ational system. Why is it require amped system. Stability and Hurve $\frac{6}{s+6}$. Find the Define th	(2 x to bandwidth red in control witz's stability DC gain <i>K</i> for	210 210
10	Q2	j) a) ₂ b) c) d) e) ²	Define the p Focused-Sh Check the si Considering so that the d Find the ma armature co Assuming th system. The negative w.r.t. open la system. Just The unit ste by $c(t) = 1$ -	rocedure of nort Answe tability using the charace ominant time athematical introlled. Is the desired the feedback cop system tify the state p response $-1.67e^{-4t}$ sing	f Zeigler-Nichlos ar Type Questic g Routh Array for $s^5 + 2s^4 + s^2$ cteristic equation ne constant is en- modeling of ar- this method is broconsiderations, system isoless n and more sensi- tement. a of a 2 nd order u	second method Part- II prs- (Answer Ar or the polynomial, $3^3 + 2s^2 + -2s - 4$ $1^3 + 9s^2 + 26s + K$ qual to 0.5. mature controlle etter to handle the find the transfer sensitive to feed sitive to variation under-damped sy Estimate the transfer	of tuning for PID on the of tuning for PID of the other of the other of the other of the other o	TWELVE) (6 210 If <i>K</i> required or and justify ustify. water heating n <i>G</i> variation <i>H</i> in control gain is given	x 8) 210 210
10		2	10	210	210	210	210	210	210

Find the transfer function $\frac{V_2(s)}{V_1(s)}$ assuming an ideal OPAMP. g) Given $R_1 = 100K\Omega$,

 $R_2 = 200 K \Omega$, $C_1 = 1 \mu F$, $C_1 = 0.1 \mu F$.

- h)21 Justify, the derivative control improves damping, reduces peak overshoot and settling time.
- $G(s) = \frac{200}{s(s+8)}$ and r(t)=2t. Determine steady state error if it A unit feedback system i) is desired to reduce the existing error by 5%. Find the new value of the gain of the system.
- j) Define minimum phase, non-minimum phase and all pass system with phase plot.
- k) Write down the properties of constant M-circles and constant N-circles.
- I) 210 Justify the statement that the zeros of the characteristic equation is equal to the poles of the closed loop transfer function.

Part-III Long Answer Type Questions (Answer Any TWO out of FOUR)

Differentiate between the signal flow graph (SFG) and block diagram reduction (16) techniques. Enumerate the different rules adopted in block diagram reduction technique.

Determine the transfer function C(s)/R(s) using SFG.

G7 G9 C(s) R(s) G8 G6 Ğ5 -H2

Q4 What is the drawback in static error coefficient method for finding steady state errors (16)that can be overcome through generalized error coefficient method. Find the steady 21/state errors in type "0", type "1" and type "2" for unit step, unit ramp and unit parabolic input respectively.

A unit step input is applied to a unity feedback control system whose open loop transfer function is given by

 $G(s)H(s) = \frac{K}{s(sT+1)}$. Determine the values of K and T given that maximum overshoot

 $M_P = 26\%$ and resonant frequency $w_r = 8$ rad/sec. Calculate the resonant peak M_r , gain crossover frequency and phase margin.

Q3

210		210	210	210	210	210	210		210	
	Q5	frequenc	n crossover	(16)						
210		210 <i>G</i> (s)H(s)	the Bode plot for $= \frac{Ks}{(s+1)^2(2s+1)}.$	Find the value of	f K for a phase	margin of 40° .	210		210	
	Q6	Why root-locus plot is required?. What are the Evan conditions for this? Discuss the different construction rules for plotting root locus.								
			ate the stability of pransfer function		/stem using Nyqi	uist criterion for t	he following			
210		210	210		$s) = \frac{K(s = 1)}{s(s+2)}$	210	210		210	
210		210	210	210	210	210	210		210	
210		210	210	210	210	210	210		210	
210		210	210	210	210	210	210		210	
210		210	210	210	210	210	210		210	
210		210	210	210	210	210	210		210	
210		210	210	210	210	210	210		210	