	210	210	210	210	210	210	
	Registr	ation No :					
Tot	al number c	of pages : 03	210	210	210	²¹⁰ B.1 PCE3	
			ester Regular/Bac IEMICAL PROCES BRANCH : 0 Time : 3 Max Marl	SS CALCULA CHEM, PT Hours ks : 100		I OLO	
An	Ass	The figure ume suitable n	Q.CODE I) which is compu- from Pa es in the right-han otations and any rt is allowed.Ansy	ulsory, any E art-III. Id margin inc missing data	dicate marks. a wherever nec	essary.	WO
			Part				
Q1	Answea) Prove tb) Calculac) Converd) Different	r the following c hat: Normality= M ate the specific gra t 50% by weight o ntiate between he	Iolarity x Valency. avity of CO at 300K of diluted ethyl alcoh at of mixing and hea	and 101.32kPa ol to mole%. at of solution.		210 (2 x	10)
	temper f) The sp	ature?	by adiabatic flame	210	210	210	
	 h) The value of the second seco	te the latent heat CV of gaseous and kJ/kg units 210	ethyl ether at 273 K of vaporization of et n-butane is 2880kJ using latent heat of 210	her in kJ/kg in /mol at 298 K f water vapour 210	this temperature C. Calculate the	range. NCV in	
	j) Write th	ne objectives of b	ypass in an unit ope	ration.			
			Part –				
Q2	Answe	r the following c	r Type Questions(A Juestions : ecific gravity 1.2 is 1			(6 x	8)
	 gravity gravity gravity b) "Mole find Prove time" c) An aquication carbon cooling 	of 0.8.2Assuming of the mixture. raction= pressure he above by cons leous solution of ate is recovered a	g there ₂ is no volume fraction =volume fra sidering a binary gas Na_2CO_3 contains 1 as $Na_2CO_3.10H_2O$ by lubility of Na_2CO_3 at	ne change on action". seous mixture of 15% carbonate y evaporation of	mixing, find the of A and B. by weight. 80% of water and subs	specific _o	
	210 j.		of crystal formed and	210	210	210	

210	210	210	210	210	210	210	210
	found to i.	b be 44.8. For 5 k the partial pre	g of this mixture ssure of oxygen		•	xide is	
210	210 ii. iii.		the mixture, and the standard cor		210	210	210
	 e) Propan and 15 determining f) Calcula The state 	e is burnt with ex- kg of CO are ob- ne the mass of pi te the standard he C_5	ccess air to ensu- tained when pro- ropane burnt in k eat of the followi $H_{12}(g) + 8 O_2(g)$ -	ure complete comb ppane is completel g and the % exces ng reaction at 298 → $5CO_2(g) + 6H_2O_2(g) =- 394$ kJ,	y burnt with 500 s air used. K: (I)	kg air,	
210	²¹⁰ The late	ent heat of vapori	zation of water a	t 298 K ² i ⁰ 44 kJ/mo	ol. 210	210	210
	 g) The we present i. ii. h) Calcula data. 	t paper pulp cont Determine: the mass of w the composition te the standard h	aining 70% wate vater removed pe on of the dried p eat of formation	er is dried in order t er 100 kg of wet pu ulp. of ethane gas at 2	to remove 60% o Ip and		
210	Heat of	formation of CO_2 formation of H_2O combustion of C_2	(l)= -285.8 kJ/m	ol, and	210	210	210
	followin CH ₄ : 89	g molar composit 0.4%, C ₂ H ₆ :5%, C	ion:	es of the natural g			
	Data:					210	040
210		Compônent	²¹⁰ GCV, k	J/mol ²¹⁰	NCV, kJ/mol	210	210
210		CH ₄	²¹ GCV, k 890.	J/mol ²¹⁰ 65	NCV, kJ/mol 802.62	210	210
210		CH ₄ C ₂ H ₆	²¹ GCV, k 890. 1560	J/mol ²¹⁰ 65 .69	NCV, kJ/mol 802.62 1428.64	210	210
210		CH ₄	²¹ GCV, k 890.	J/mol ²¹⁰ 65 .69 .17	NCV, kJ/mol 802.62	210	210
210	210 Specific j) 210Write a k) The Or fuel wit	$ CH_4 C_2H_6 C_3H_8 C_4H_{10} volume at 298K short note on Re sat analysis of a $	210 GCV, k 890. 1560 2219 2877 and 101.3 kPa= ference substance flue gas produce	J/mol ²¹⁰ 65 .69 .17 .40 24.465 m ³ /kmol.	NCV, kJ/mol 802.62 1428.64 2043.11 2657.32 210 of a pure hydro	210 carbon	210
	210 Specific j) 210Write a k) The Or fuel wit 85.5% i.	$\begin{array}{c} CH_4\\ \hline C_2H_6\\ \hline C_3H_8\\ \hline C_4H_{10}\\ \hline c \ volume \ at \ 298K\\ short \ note \ on \ Re\\ sat \ analysis \ of \ a\\ h \ an \ excess \ of \ o\\ N_2. \ Calculate:\\ the \ percent \ ext{ excess} \ cont \ ext{ excess} \ ext{ excess} \ cont \ ext{ excess} \ cont \ ext{ excess} \ ext{ excess} \ cont \ ext{ excess} \ ext{ excess} \ cont \ ext{ excess} \ cont \ ext{ excess} \ ext{ excess} \ cont \ ext{ excess} \ ext{ excess} \ cont \ ext{ ex$	210 GCV, k 890. 1560 2219 2877 and 101.3 kPa= ference substance flue gas produce dry air is found	J/mol 210 65 69 17 40 24.465 m ³ /kmol. ce plots ₂₁₀ red by combustion to be 8.5% CO ₂ , or combustion and	NCV, kJ/mol 802.62 1428.64 2043.11 2657.32 210 of a pure hydro	210 carbon	
	210 Specific j) 210Write a k) The Or fuel wit 85.5% i. ii. l) Obtain 210	$\begin{array}{c} CH_4\\ C_2H_6\\ C_3H_8\\ C_4H_{10}\\ \hline \\ c \ volume \ at \ 298K\\ short \ note \ on \ Re\\ sat \ analysis \ of \ a\\ h \ an \ excess \ of \ o\\ N_2. \ Calculate:\\ the \ percent \ ext \ analysis \ the \ the$	210 GCV, k 890. 1560 2219 2877 and 101.3 kPa= ference substance flue gas produce dry air is found excess air used for io of C:H in the f equation for case following reaction	J/mol 210 65 .69 .17 .40 24.465 m ³ /kmol. ce plots ₂₁₀ red by combustion to be 8.5% CO ₂ , or combustion and uel. alculating the heat	NCV, kJ/mol 802.62 1428.64 2043.11 2657.32 210 of a pure hydro 1.0% CO, 5% C	210 carbon D ₂ , and	
210	210 Specific j) 210Write a k) The Or fuel wite 85.5% i. ii. l) Obtain 210 Data : ΔH_R^0 at	$\frac{CH_4}{C_2H_6}$ $\frac{C_3H_8}{C_4H_{10}}$ c volume at 298K short note on Rest analysis of a h an excess of on N_2. Calculate: the percent ext the weight rat the empirical ext ature T (K) for the 298 K = -82.66 k.	21 GCV, k 890. 1560 2219 2877 and 101.3 kPa= ference substance flue gas produce dry air is found kcess air used for io of C:H in the f equation for case following reaction CH_4 (g) + C ₂ H ₆	J/mol ²¹⁰ 65 69 17 40 24.465 m ³ /kmol. ce plots ₂₁₀ red by combustion to be 8.5% CO ₂ , or combustion and uel. alculating the heat on: $_{210}^{210}$ $_{3}(g) \rightarrow C_{3}H_{8}(g)$ $+ cT^{2}$, kJ/mol.K.	NCV, kJ/mol 802.62 1428.64 2043.11 2657.32 210 of a pure hydro 1.0% CO, 5% C at of reaction a 210	210 carbon D ₂ , and	210
210	210 Specific j) 210Write a k) The Or fuel wite 85.5% i. ii. l) Obtain 210 Data : ΔH_R^0 at	CH_4 C_2H_6 C_3H_8 C_4H_{10} c volume at 298Kshort note on Rest analysis of ah an excess of ah an	21° GCV, k 890. 1560 2219 2877 and 101.3 kPa=2 ference substand flue gas produce dry air is found xcess air used for io of C:H in the f equation for case following reaction CH4 (g) + C2H0 J/mol, C_p^0 = a +bT- a	J/mol ²¹⁰ 65 .69 .17 .40 24.465 m ³ /kmol. ce plots ₂₁₀ red by combustion to be 8.5% CO ₂ , or combustion and uel. alculating the heat on: $_{210}^{210}$ $_{3}$ (g) → C ₃ H ₈ (g) + cT ² , kJ/mol.K. b x10³	NCV, kJ/mol 802.62 1428.64 2043.11 2657.32 210 of a pure hydro 1.0% CO, 5% C at of reaction a 210 c x10 ⁶	210 carbon D ₂ , and	210
210	210 Specific j) 210Write a k) The Or fuel wite 85.5% i. ii. l) Obtain 210 Data : ΔH_R^0 at	$\begin{array}{c} CH_4 \\ \hline C_2H_6 \\ \hline C_3H_8 \\ \hline C_4H_{10} \\ \hline c \ volume \ at \ 298K \\ short \ note \ on \ Re \\ sat \ analysis \ of \ a \\ h \ an \ excess \ of \ on \\ N_2. \ Calculate: \\ the \ percent \ ext \\ the \ percent \ ext \\ the \ weight \ rat \\ the \ empirical \ ext \\ ature \ T_{(K)} \ for \ the \\ \hline 298 \ K = -82.66 \ k. \\ \hline omponent \ CH_4 \\ \hline CH_4 \\ \hline \end{array}$	21° GCV, k 890. 1560 2219 2877 and 101.3 kPa=2 ference substance flue gas produce dry air is found xccess air used for io of C:H in the f equation for ca e following reaction CH4 (g) + C2H6 J/mol, C_p^0 = a +bT- a 19.2494	J/mol ²¹⁰ 65 .69 .17 .40 24.465 m ³ /kmol. ce plots ₂₁₀ red by combustion to be 8.5% CO ₂ , or combustion and uel. alculating the heat on: 210 3 (g) → C ₃ H ₈ (g) + cT ² , kJ/mol.K. b x10³ 52.1135	NCV, kJ/mol 802.62 1428.64 2043.11 2657.32 210 of a pure hydro 1.0% CO, 5% C at of reaction a 210 of reaction a 210	210 carbon D ₂ , and	210
210	210 Specific j) 210Write a k) The Or fuel wite 85.5% i. ii. l) Obtain 210 Data : ΔH_R^0 at	CH_4 C_2H_6 C_3H_8 C_4H_{10} c volume at 298Kshort note on Rest analysis of ah an excess of ah an	21° GCV, k 890. 1560 2219 2877 and 101.3 kPa=2 ference substand flue gas produce dry air is found xcess air used for io of C:H in the f equation for case following reaction CH4 (g) + C2H0 J/mol, C_p^0 = a +bT- a	J/mol ²¹⁰ 65 .69 .17 .40 24.465 m ³ /kmol. ce plots ₂₁₀ red by combustion to be 8.5% CO ₂ , or combustion and uel. alculating the heat on: $_{210}^{210}$ $_{3}$ (g) → C ₃ H ₈ (g) + cT ² , kJ/mol.K. b x10³	NCV, kJ/mol 802.62 1428.64 2043.11 2657.32 210 of a pure hydro 1.0% CO, 5% C at of reaction a 210 c x10 ⁶	210 carbon D ₂ , and at any 210	210

		Part – III				
210 210	Q3	 Long Answer Type Questions (Answer Any Two out of Four) Air at 303 K saturated with water vapouris dehumidified by cooling and condensation of water vapour at 286 K. Air leaving the dehumidifier saturated at 286 K is mixed with a part of original air whichis bypassed through dehumidifier. The resulting air stream is reheated to 313 K. It is desired that the final air contains water vapour not more than 0.02 kg of dry air. Calculate: a) the mass of dry air bypassed per each kg of dry air sent through the dehumidifier, b) the mass of water vapour condensed in the dehumidifier per 100 m³ of air sent through it, and c) the volume of final air obtained per 100 m³ of air passed through the dehumidifier. 	(16)	210		
210	Q4	The fresh feed to a methanol synthesis unit contains on mole basis: 32% CO, 64% H ₂ , and 4% N ₂ which flows at a rate of100 moles/h.The fresh feed is mixed with recycle feed flowing at a rate of 400 moles/h to produce a reactor feed containing 13 mole% N ₂ . The product stream leaving the condenser (after reactor)contains ²¹⁰ only liquid methanol. For preventing a build-up of nitrogen in the system, a purge ¹⁰ stream is withdrawnfrom the gas stream leaving the condenser. The gases not purged constitute the stream recycled to the reactor. Calculate: a) the production rate of methanol in moles/h, b) the molar flow rate and composition of the purge gas, and c) the overall and single pass conversion.	(16)	210		
210	Q5	A theoretical producer gas containing 35% CO and 65% N ₂ at 25 ^o C is burnt with ²¹ 050% excess air which is preheated to 200 ^o C. ²¹ Assuming complete combustion, ¹⁰ calculate the theoretical flame temperature. ΔH_R^0 at 298 K = -54.66 kJ/mol. Data: C _{p,O2} = 6.94 +0.000677 T C _{p,N2} = 6.5 +0.001413 T C _{p,C0} = 6.35+0.00018 T C _{p,C02} = 9.1 +0.0048 T If the products of combustion leave the reaction chamber at 500 ^o C, calculate the ²¹ 0 heat evolved in the reaction chamber per kmol of CO burnt for 80% conversion. ²¹⁰				
210	Q6	Moist air contains 0.025 kg water vapour per cubic meter of mixture at 313K and 103.15 kPa. Calculate: a) the relative saturation, b) the absolute humidity of the air, c) the percent saturation, and d) the temperature to which the mixture be heated so that its percent saturation becomes 10%. 210 210 210 210 The vapour pressure of water (in kPa) is approximated by the Antoine equation as : $lnP^{S} = 16.262 - \frac{3799.887}{T-46.854}$.	(16)	210		
210		210 210 210 210 210 210		210		