	210	210	210	210	210	210	210		
F	Regi	stration No :							
Tota	al Nu	umber of Pages : 02	2				B.Tech		
	010	⊲.3 rd Se	mester Regula	r / Back Exam	ination 2018-19		ET3I103		
	210	210	SIGNA	L & SYSTEMS	S	210	210		
				CH : ECE, ET(ne : 3 Hours	ō				
				Marks : 100					
A	nsw	ver Question No.1 (I		CODE : E938 compulsory,	any eight from	Part-II and any	/ two		
			fro	om Part-III.					
	210		ures in ² the righ	it nano-margir	i indicate mark	S. 210	210		
Q1		Short Answer Type	Questions (Ans)	Part-I			(2 x 10)		
QI	a)	List the ROC propert	ies of Laplace trai	nsform.			(2 × 10)		
	b) c)	Find theZ-transform of Find the Fourier trans			<i>n</i>].				
	d)	Is there be two diffe		. ,	e transform? Giv	e an example.			
	210 e)	How do you different Define the convolution	-	nals? 210	210	210	210		
	f)	What is aliasing?	•						
	g)	Given $x(n) = \{1, -4, $ function.	3,1,5,2}. Represe	ent x(n) in term	s of weighted s	hifted impulse			
	h)	State the multiplication			is stable as a 40				
	i)	Using Z-transform ch		ollowing system 2z 1	is stable or not?				
	210	210		$\frac{1}{z+3^{2}} + \frac{2z}{z+3^{2}} + \frac{1}{2} < \frac{1}{2} < \frac{1}{2}$		210	210		
	j)	State and prove the t	ime folding prope	rty of Z- transfor	m.				
Q2		Focused-Short Ans	war Typa Quasti	Part- II	Any Fight out of	Twolvo)	(6 x 8)		
QL.	a)	Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) Check the system $y(n) = log_{10}(x n)$ is linear, time invariant, causal and static.							
	b)	Find out whether the Determine power or e		is energy or pov	ver signal or neith	er any of two.			
	210	210	$x(t)^{210} = u(t) +$	5u(t-1) - 2u(t-1)		210	210		
	c) d)	Find the spectrum of Find the Fourier trans	. ,		•	ude A.			
	e)	Find the Fourier transform of a rectangular pulse with width T and amplitude A. State and prove Parseval's theorem of Fourier Transform.							
	f)	Find the invers Lapla		(= - =) (= - =)					
	g)	Using Laplace transfer $x(t) = e^{-b t }$ for both		ne pole-zero plot	and find ROC of	the signal x(t).			
	ħ)	Find theZ-transform a	and sketch the RC			210	210		
	i)	Using the properties		$u[n] + 3^n u(-n -$ form solve	- 1)				
	,	• • •	$y(1 + az^{-1}); z >$		$\frac{az^{-1}}{(z-1)^2}; z > $	a			
	j)	Determine DTFT of ($(1 - az^{-1})^2$				
	k)	Using convolution pro	21		TFT of				
	210	210	$X(e^{j\omega}) =$	$\frac{1}{(1-ae^{j\omega})^2}, a $	210 < 1	210	210		
			m(0)	$(1 \alpha^{i(0)})^{2}$					

210		210		210	210	210	210	210	210				
	Q3		Part-IIILong Answer Type Questions (Answer Any Two out of Four)Using convolution integral, determine the response of a CTLTI system y(t) given input $x(t) = e^{-\alpha t}u(t)$ and impulse response $h(t) = e^{-\beta t}u(t), \alpha < 1, \beta < 1$										
210	Q4	210	Analyze or	n recursive and	non-recursive sys	tems with an exa	mple	210 (16)	210				
	Q5	 a) Using graphical method, find the output sequence y[n] of the LTI system whose response h[n] is given and input x[n] is given as follows. x[n] = {0,5,2} and h[n] = {1,1,1}. b) Consider an analog signal x(t)= 5 cos 200πt. i. Determine the minimum sampling rate to avoid aliasing. ii. If sampling rate is 400Hz, What is the DT signal after sampling? 											
210	Q6	210	b) State a i.	Differentiation in	ng properties of D	210)TFT.	210	²¹⁰ (16)	210				
210		210		210	210	210	210	210	210				
210		210		210	210	210	210	210	210				
210		210		210	210	210	210	210	210				
210		210		210	210	210	210	210	210				
210		210		210	210	210	210	210	210				
210		210		210	210	210	210	210	210				