	210	210	210	210	210	210	
l	Regi	stration No :					
Tota	al Nu	mber of Pages : 0	2			P	B.Tech ET3I00 ²
	210	21(3^{rs} S	emester2Regula				
				DUCTOR DEV CH : ECE, ET(
				e : 3 Hours			
				Marks : 100 ODE : E795			
Α	nsw	er Question No.1 (Part-1) which is	compulsory,	any eight from	Part-II and an	y two
	210	²¹⁰ Tho fi	frc gures in the righ	om Part-III. t band margir	a indicato marke	210	
		i në në	gures in the righ	t nanu maryii		5.	
Q1		Short Answer Typ	e Questions (Ans	Part- I wer All-10)			(2 x 10
Q 1	a)	What is the signific	cance of Fermi er	ergy level? Un		n Fermi-Dirac	(2 × 10
	b)	distribution function Determine the value				erav is 0.22eV	
	210 C)	above the valence be What is lattice mole	pand energy.				
	C)	semiconductor.	bility? Give its sig	nincance in ca	mer transport pre	enomena in a	
	d) e)	Why non-equilibriur Show that the total					
	f)	Draw the small sigr	al equivalent circu				
	g)	factors of MOSFET Write down the exp		electrical field a	nd voltage at brea	kdown voltage	
	010	and identify the fact	ors involved in the	expression.	210	210	
	ħ) i)	What is meant by bails of apple			s used?		
	j)	With the help of su transistor for cut-off			ty carrier distribut	ion in an npn	
~~				Part- II	Auro Elaberrative	T h)	(0 0)
Q2	a)	Focused-Short An What is Fermi ener	gy? Discuss the va				(6 x 8
	210 b)	suitable expression The total current in		210 is constant an	210 Ind is composed of	210 f electron drift	
	,	current and hole dif to 10^{16} cm ⁻³ . The 0) where L=12 μm . Th	fusion current. The hole concentration	electron conce n is given	entration is constar by p(x)=10 ¹⁵ xex	nt and is equal $p(-x/L)cm^{-3}(x \ge 1)$	
		diffusion current der		•		.,	
	c) d)	Derive Einstein rela Set up the ambipo	0				
	210	applications ²¹⁰	210	210	210	210	
	e)	Explain the effect of reverse biased.	r space charge wid	th at p-n junctio	n when(i) forward	biased and (ii)	
	f)	A silicon p-n junction				ncentration of	
	g)	N _d =5x10 ¹⁶ cm ⁻³ and Explain the concept	t of junction break	lown in a p-n ju	nction. Derive an	expression for	
	h)	peak electric field of With a neat and cl				MOS structure	
	210	before and after cor	ntact. ²¹⁰	210	210	210	
	i)	What is CMOS tech and depletion mode		ne cross section	n ot an n-channel	enhancement	

210		210	210	210	210	210	210		210
		j)	Consider a MOS dev substrate with N _a =10	^{l5} cm⁻³,t _{ox} =220A ⁰ an					
210		k) I) 210	the threshold voltage Sketch a basic Eber's Consider a uniformly $0.5 \mu m$ and a base do Determine the collect the given punch-throu	-Moll Equivalent of doped silicon bipola oping $N_B = 10^{16} \text{ cm}^{-3}$. or doping and dele	ar transistor with a The punch throug etion region width	a metallurgical gh voltage is t	l base width of o be V _{pt} <u>=</u> 25 V.		210
				Р	art-III				
210	Q3	a) b) 210	Long Answer Type C Derive the ideal diode Explain the C-V chara region of a p+type sub	equation of the p-r acteristics of accum	n junction. Draw V ulation region, de	-I characterist		(8) (8)	210
	Q4	a)	Derive the expression					(8)	
		b)	band using effective of What is threshold vol band voltage in terms	tage? What is its s	ignificance? Deriv			(8)	
210	Q5	a) 210	Derive an expression region in forward act	ve mode for an np	on bipolar transist			(8)	210
		b)	cutoff, saturation and What are different MOSFET's. Draw its o	types of MOSFET	's? Explain the	basic workir	ng of one of	(8)	
	Q6	a)	Distinguish between expression for Fermi of concentration and t	energy level positio				(8)	
210		2 b)	Derive an expression a uniformly doped p-n	for the electric field	d and potential in	the space ch	arge region of	(8)	210

210 210 210 210 210 210 210 210 210 210 210 210 210 210 210	210	210	210	210	210	210	210	210
210 210 210 210 210 210 210 210	210	210	210	210	210	210	210	210
	210	210	210	210	210	210	210	210

210 210 210 210 210 210	210	210	210
-------------------------	-----	-----	-----