210	210	210	210	210	210	210	210
	Registr	ation No :					
	Rogioti						
	Total N	umber of Pages :	02			B.Tec	h
210	210	210	210	210	210	21 BEES221	210
		3	^d Semester Bac NETW(ORK THEORY	1 2018-19		
	BF	RANCH : AEIE, AE		EEE, EIE, ELE e : 3 Hours	ECTRICAL, ETC	C, IEE, IT, ITE	
			Max	Marks : 70			
010	040	Answer Question		ODE : E993 compulsory ar	nd any five fror	n the rest.	010
210	210	The figu	ires in the right	hand margin i	indicate marks	- 210	210
	Q1	Answer the follow		leure		(2 x 10)	
	a) b)	Define Kirchoff's cu State the maximum	n power transfer th	neorem.			
	c)	Write an expressic circuit.	on for resonance	frequency and b	and width of ser	ies RLC	
210	210 d) e)	Write two propertie Convert a star con			$O_{R_{a}} = 1000$	210	210
	f)	Check Whether the	e polynomial is sta				
	g)	P(s)= 6s ⁶ +8s ⁵ +3s ⁴ - State the necessar	v conditions for dr	riving point function	ons.		
	h)	What is the Initial 8					
	i) j)	What is the differer What is the efficien				n power	
210	210	transfer condition?	210	210	210	210	210
	Q2 a)	A series RL circul applied through a s		and L= 20H has	a DC voltage	of 200V (5)	
		i. The equation	on for current and at t=0.5sec	voltage across L	and R		
	b)	II. The current	······			(5)	
210	210	210	5 ohms	10 c	ohms	210	210
		20V	<u></u> - 두	³ ohms	\bigcirc		
					5A		
		Find the current th	vou se 20 register		ion theory		
		Find the current thr	ougn 312 register		ion theorem.		
210	Q3 ₂₁₀ a)	210			210	210 (5)	210
			ο <u>8 Ω</u>	4 Ω 	0		
				2Ω			
		Obtain h- paramete	o er of given circuit.		0		
210	b) 210	Sketch the wavefor i. l(t)=r(t)+2r(m that is represent-1)-u(t ⊕2)-2r(t-) 210	(5) 210	210
			3u(t −1)−3u(t −2)+				

210 210 210 210 210 210 210	210 210	210	210	210	210	
-----------------------------	---------	-----	-----	-----	-----	--

210	210	210	210	210	210	210		210
	Q4 a) b)	Derive the condition y-parameter. Derive the condition parallelwith a RC bra	n of resonance		-		(5) (5)	
210	Q5⊡ a) b)	Explain the following i. Incidence ma ii. Tie-set matrix With neat diagram ex is different from case	trix xplain about seri		210 f two port networl	210 K. How it	(5) (5)	210
210		A function is given by Find the positive real A current transfer fur Obtain its time doma	ness of the func- nction is given by $I(s) = \frac{1}{(s+1)^2}$	tion. 210 $\frac{5s}{2)(s^2 + 2s + 2)}$	210	210	(5) (5)	210
	Q7	Find the First and se	cond Foster form 2(s	n of the driving p $s^2 + 1(s^2 + 9)$	ooint impedance f	unction	(10)	
210	210	210		$\frac{s^2 + 1)(s^2 + 9)}{s(s^2 \pm 4)}$	210	210		210
	Q8 a) b) c) d)	Write short answer Image impedance Hurwitz polynomial Transient analysis of Time domain behavio	Series resonant				(5 x 2)	
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210