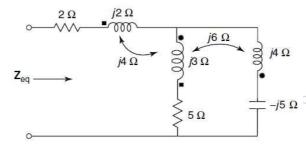
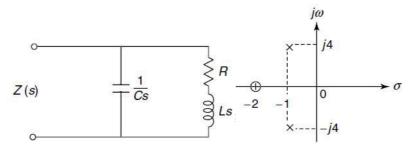
210	2	10	210	210	210	210	210	210
	Re	gistration No	:					
	Total N	umber of Pag					B.T PET3	ech 1102
210		no Ar Question N		BRANCI Time Max N Q.CO	RK THEORY H : ECE, ETC : 3 Hours Marks : 100 DE : E730		210 art-II and any TV	210
				fron	n Part-III.		-	
210	2	10	i ne figure	es in the right i	nand margin ii	ndicateamarks.	210	210
	01		<i>••</i> T: <i>••</i> • • • •		Part- I		(0	40)
	Q1		••	estions (Answe etween series an	,	2002	(2 x	10)
	a) b)			in coupled circu	•			
210		What are the		•	210	210	210	210
	, d)			the network. She	ow all the trees o	of this graph.		
210		10	210	rm of a rectangu	2 (2) 4 (4) 4 (5) 4	210	210	210
210	e)	10	210		$\frac{1}{T} \rightarrow t$	210	210	210
	f)	State and ex	plain Telleg	gen's theorem.				
210	g) h) i) j)	and 5 H, find Why source to What do you A complex wa	the Q facto ransformati understand ave of 240 V	r of the coil. ²¹⁰ I by steadt state a V rms value has	210 network analysis and transient res 20% third harmo	ponse of the system nic content, 5% f	210 tem? ifth	210
		harmonic cor fundamental a			rmonic content.	Find the rms v	value of the	
210	2	10	210	210	210	210	210	210

-

210	210	210	210	210	210	210	210


Part- II

Q2 Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)


a) Using the pole-zero plot, find magnitude and phase of the function at s = j4

$$F(s) = \frac{(s+1)(s+3)}{s(s+2)}$$

- b)21 The selectivity is inversely proportional to its bandwidth of RLC series circuit. Provent.
 - c) Find equivalent impedance of the network shown in Figure.

- d) Write down the properties and necessary and sufficient conditions of positive real function.
- e) The pole-zero diagram of the driving-point impedance function of the network of figure is shown below. At dc, the input impedance is resistive and equal to 2 ohm. Determine
 - ²¹ the values of \mathbf{R}^{21} L and C.

- 210
- f) When two coils are connected in series, the total inductance is measured to be 18mH. When the connections to one coil are reversed, the total series inductance is 28mH.Find the mutual inductance.
- g) Define the singular functions. Why the singular function is so important in system?
- h) Find the voltage across the 2 ohm resistor in the network using superposition theorem.

 $2 \angle 30^{\circ} \mathsf{A} \textcircled{1}_{1} \textcircled{2}_{-j2 \Omega} \overset{j1 \Omega}{1_{2}} \textcircled{0}_{000}^{+} \mathsf{8}_{\angle 45^{\circ}} \mathsf{V}$

- i) ²¹ Design a m-derived T and π-section low pass filters for nominal characteristics impedance R₀ =600 ohm, cut-off frequency=1800 Hz and infinity attenuation frequency f_∞=2KHz.
 - j) Check whether the given polynomial P(s) is Hurwitz or not.

$$P(s) = 2s^5 + 3s^4 + 6s^3 + 5s^2 + 3s + 4$$

- k) What are the conditions for reciprocity and symmetry for h and Y parameter?
- I) Find the resonant frequency for parallel R,L,C circuit and show the condition on which
- $_{210}$ a resonant parallel frequency will be the series resonant frequency $_0$

210

	210	210	210	210	210	210	210
	l ong A	nswer Type Que		art-III Any Two out of ∣	Four)		
Q	State ar Determi	nd explain the ma	ximum power tra 2_ that will draw th	nsfer theorem. e maximum powe			(16)
	210 210	9 \	$ \begin{array}{c} 2\Omega \\ + \nu_{\chi} - \end{array} $	4Ω 	~ 0	210	210
	210	210		3 <i>v</i> _x	0	210	210
Q4	everywh In the ne	nere? Define con	volution integral. Figure, the switch	ems? Is the initia What is application i is in the position nd v (t) for $t > 0$.	on of convolution	integral?	(16)
	210		Ω 1 2 Λ 0 1 0 1 1 H	ξ 0.5 Ω	$\begin{array}{c} & \uparrow \\ 2 H \\ \downarrow \\$	210	210
Q	Define t trigonon	the Signum funct netric Fourier seri	ion. Draw the matching of the followin $f(t)$	agnitude and pha g waveform show	se spectrum of n in Figure.	it. Find the 210	(16) 210
	210	210	$-T$ $-\frac{T}{2}$ 0	$\frac{T}{2}$	→ t 10	210	210
Q		o understand by r wing impedance	function	s? Realize the Fo	ster I and Caue	r II forms of	(16)
			4(s	$\frac{s^{2}+1(s^{2}+9)}{s(s^{2}+4)}$			

210 210 210 210 210 210 210 210 210

210 210 210 210 210 210 210 2