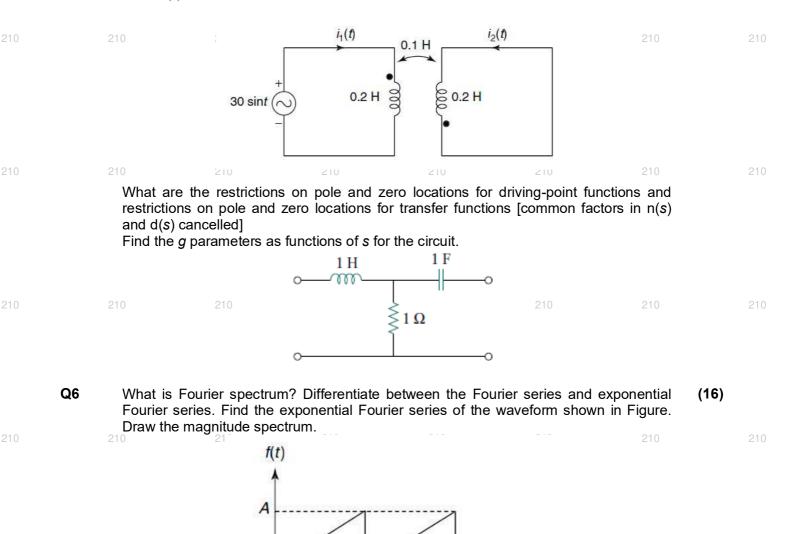

	210	210	210	210	210	210	
	Reg	istration No :					
Tota	al Nur	mber of Pages : 03					ech
	210	3 rd Sem	ester Regular / E	Back Examinati	ion 2018-19	210 PEL3	101
	210		NETWOR	K THEORY CH : EEE		210	
				3 Hours			
				arks : 100)E : E727			
An	swer	Question No.1 (Par	t-1) which is com	pulsory, any E	IGHT from Pa	rt-II and any TV	VO
	210		from res in the right ha	Part-III.	licato marks	210	
		i në ligu	es in the right ha	and margin ma			
Q1	c	Short Answer Type Q		art- I All 10)		(2 x	10)
QI		State Millman's theorem				(2 X	10)
		Draw the circuit model n the circuit containing					
	210	create the natural respo	onse of the system.	210	210	210	
	d) [∠] `f	Find the poles and zero		the following circ	cuit.	210	
			R1=2 ohm				
			s R2=4 ohm	T C=1/4	4 F		
			1				
	210				210	210	
		Define tree and co-tree A series resonant circu		e of 500 ohm at	resonant frequer	ncy. Cut-off	
	f	requencies are 10 kHz	and 100 Hz. Deter	mine the resonan	t frequency.	, -	
	•	What is driving point im Find the Fourier transfo	•		Κ?		
		$f(t) = e^{-at} \qquad 0 < t < \infty$	-				
		A resistor R is connecte					
		Find the value of R so amps is short circuited	•				
	e	each lamp.		-			
	j) \	What do you mean by s	synthesization of a r	letwork?			
Q2		Focused-Short Answe		rt- II - (Answer Anv F	Fight out of Two	alvo) (e	x 8)
44	a) ₂₁₀	Write the reciprocity an	d symmetry condition	on in h-parameter	r? ₂₁₀	210	A U)
		A dc circuit of source v					
		What is the time cons when RC combination i		ana now iong wil	ii current flow in	ine circuit	
	c) F	Plot the responses of t	he system for the p	oles located at d	lifferent locations	; in s-plane	
		and state the stability ir Vrite down the prope		al function. Che	ck whether the	function is	
		positive real function	-				
	210	210	210	$=\frac{210}{s^2+s+1}$	210	210	
			D ()				


210	210	210	210	210	210	210	210

Q4 The switch in the Figure has been in position 'a'for a long time. At t = 0, it moves to (16) position *b*. Calculate *i*(*t*) for all t > 0.

²¹⁰ ²¹A low-pass filter is composed of a symmetrical π^2 section. Each series branch is a 0.02 H inductor and shunt branch is a 2 µF capacitor. Find (a) cut-off frequency, (b) nominal impedance,(c) characteristic impedance at 200 Hz and 2000 Hz, (d) attenuation at 200 Hz and 2000 Hz, and (e) phase shift constant at 200 Hz and 2000 Hz.

Q5 Find $i_2(t)$ in the network shown.

 2π

 4π

0

210

210

(16)