		210	210	210	210	210	210		
	R	egistration N	lo :				7		
Tota	al Nu	umber of Pag	jes : 02				B.Teo PCI310		
		210	3 rd Semest	er Regular / Ba		on 2018-19	210		
				MECHANICS BRANCH					
				Time : 3					
				Max Mark					
				Q.CODE					
An	swe	r Question N	o.1 (Part-1)	which is compu		GHT from Part	-II and any TWO	C	
		210	210	from Pa		210	210		
		210	The figures	in the right han	d margin indi	cate marks.	210		
				Part	- 1				
Q1			••	tions (Answer A	II-10)		(2 x 1	0)	
	a)	What is proof							
	b)	Explain the P		perposition.					
	C)	What is Poiss	010	210	210	210	210		
	d)	Define Bulk N			LIU	210			
	e)	What is polar		ertia?					
	f)	What is Princ		_					
	g)								
	h)	What is composite beam? What is its utility?							
	i)	What is slend							
	j)	210 210 210	210 210 210	metric strain?	210	210	210		
00			o #1 A 10 outo # T	Part-		Sinht aut of Tura	lve) (6 x 8		
Q2	2)	Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) Define shear stress and explain the principle of shear stress.)	
	a) b)								
	ы) С)	Draw the stress-strain diagram for mild steel and mention the important points. Derive the expression for volumetric strain of a thin spherical vessel subjec							
	0)	internal press	•	volumente strain			jecieu io		
	d)			and by ² "beam of ເ	uniform [®] strengt	h', and how can	it can be		
	e)			r two perpendicu	lar stress (one	is tensile and a	another is		
	f)	What is flitched beam and what are its advantages?							
	g)	Drive the equation of equivalent twisting moment and equivalent bending moment of a							
	0,	shaft subjected to bending moment M and torsion T.							
	h)	Compare the weight ratio of hollow shaft and solid shaft subjected to turning moment 'T'.							
	i)	What is the Strain energy of a hollow shaft subjected to torsion 'T'?							
	j)		•••	xplain the limitatio	•				
	k)	Derive an exp load.	pression for th	ne stiffness of clos	ely-coiled helica	al spring subjecte	ed to axial		
	I)		types of loa	d and types of s	upport in bean	n subjected to ti	ransverse		
	-	loads.	210	••		-			
		210	210	210	210	210	210		

		Par	t-III			
Q3	a)	Establish the relation between Young's mo			bulk (12	?)
	b)		nposite rods? Explain	210	210 (4)	210
Q4	a)	UDL per meter the beam may carry, if the)
	b)	· · · · · · · · · · · · · · · · · · ·	a circular cross sectio	on beam subjecte	d to (6))
Q5	a)		r the column, when	both of the ends	are (8)	210
	b)	Determine the expression for maximum		n of cantilever be	eam (8))
Q6	a)	12 cm and there are 20 effective turns in it 25 mm. If the same load is dropped from	t. Find the load that c n height of 10 cm o	auses a deflectio n the spring find	n of)
	b)	A hollow shaft of diameter ratio 3/8 is req maximum torque being 20 % greater than	uired to transmit 600 the mean. The shear	k₩ at 110 rpm, stress is not exc	eed	210
	Q4 Q5	b) Q4 a) b) Q5 a) b) Q6 a)	 Long Answer Type Questions (Answer A Establish the relation between Young's modulus (K). b) How the thermal stresses developed in content of the thermal stress developed in content of the thermal stress of the text of the text of tex	 a) Establish the relation between Young's modulus (E), modulus of modulus (K). b) How the thermal stresses developed in composite rods? Explain 210 a) A rectangular beam 300 mm deep is simple supported over a spuble per meter the beam may carry, if the allowable bending s (Take I= 8 x 10⁶mm⁴) b) Explain the distribution of shear stress of a circular cross section transverse load W. a) Derive an expression for crippling load for the column, when thinged. b) Determine the expression for maximum slope and deflection carrying a concentrated load 'W' at its free end. c) A helical spring is made of 6 mm diameter steel wire. The mean 12 cm and there are 20 effective turns in it. Find the load that of 25 mm. If the same load is dropped from height of 10 cm or deflection and maximum stress induced in the spring. (Take G_s= b) A hollow shaft of diameter ratio 3/8 is required to transmit 600 maximum torque being 20 % greater than the mean. The shear to 63 MN/m². And angle of twist in length of 3 meters not to exce 	 Long Answer Type Questions (Answer Any Two out of Four) a) Establish the relation between Young's modulus (E), modulus of rigidity (G) and modulus (K). b) How the thermal stresses developed in composite rods? Explain 210 c) A rectangular beam 300 mm deep is simple supported over a span of 4 meters. W UDL per meter the beam may carry, if the allowable bending stress is 120 N/m (Take I= 8 x 10⁶ mm⁴) b) Explain the distribution of shear stress of a circular cross section beam subjecte transverse load W. c) Derive an expression for crippling load for the column, when both of the ends hinged. 210 210 210 210 210 210 210 210 210 210	 Long Answer Type Questions (Answer Any Two out of Four) a) Establish the relation between Young's modulus (E), modulus of rigidity (G) and bulk modulus (K). b) How the thermal stresses developed in composite rods? Explain 210 210 (4) a) A rectangular beam 300 mm deep is simple supported over a span of 4 meters. What UDL per meter the beam may carry, if the allowable bending stress is 120 N/mm²? (Take I= 8 x 10⁶mm⁴) b) Explain the distribution of shear stress of a circular cross section beam subjected to transverse load W. a) Derive an expression for crippling load for the column, when both of the ends are hinged. 210 210 210 210 210 210 210 (6) b) Determine the expression for maximum slope and deflection of cantilever beam carrying a concentrated load 'W' at its free end. c) A helical spring is made of 6 mm diameter steel wire. The mean diameter of the coil is 12 cm and there are 20 effective turns in it. Find the load that causes a deflection of 25 mm. If the same load is dropped from height of 10 cm on the spring find the deflection and maximum stress induced in the spring. (Take G_s=80 Gpa) b) A hollow shaft of diameter ratio 3/8 is required to transmit 600 kW at 110 rpm, the maximum torque being 20 % greater than the mean. The shear stress is not exceed to 63 MN/m². And angle of twist in length of 3 meters not to exceed 1.4⁰. Calculate the

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210