		210	210	210	210	210	210		
	R	egistration I	No :				7		
Tota	al Nu	umber of Paç	ges : 02				B.Tec PME3I10		
		210	3 rd 1Semest	er Regular / Bao MECHANICS		on 2018-19	210		
				BRANCH					
				Time : 3					
				Max Mark					
				Q.CODE					
An	swe	r Question N	Io.1 (Part-1)	which is compu	ulsory, any El	GHT from Part	-II and any TWC)	
		210	210	₂₁₀ from Pa	210	210	210		
			The figures	in the right han	d margin indi	cate marks.	210		
				Part					
Q1			• •	tions (Answer Al	I-10)		(2 x 10))	
	a)	What is proo							
	b)		Principle of Su	perposition.					
	c)	What is Pois	010	210	210	210	210		
	d)	Define Bulk N							
	e)	•	r moment of in	iertia?					
	f)	What is Princ	•	0					
	g)	What is point of contraflexure?							
	h)	What is composite beam? What is its utility? What is slenderness ratio?							
	i) i)								
	j)	210 210	mean by volu	210	210	210	210		
Q2		Eccused Sh	ort Answor T	Part- ype Questions-		Eight out of Two	lve) (6 x 8	2	
QZ	a)	Define shear		')					
	b)	Draw the stre	c						
	c)	Derive the e							
	-,	internal press	•						
	d)	010 010 010 010 010 010							
	e)	Draw the Mo compressive		r two perpendicul	ar stress (one	is tensile and a	another is		
	f)	What is flitched beam and what are its advantages?							
	g)	•		alent twisting mor moment M and to		alent bending mo	ment of a		
	h)	2Compare the weight ratio of hollow shaft and solid shaft subjected to turning moment 'T'.							
	i)	What is the Strain energy of a hollow shaft subjected to torsion 'T'?							
	j)		•••	xplain the limitatio	•				
	k)			ne stiffness of clos		al spring subjecte	ed to axial		
	I)	Describe the	e types of loa	id and types of s	upport in bean	n subjected to ti	ransverse		
		loads.	210	010	210	010	010		
		210	210	210	210	210	210		

		Par	t-III			
Q3	a)	Establish the relation between Young's mo			bulk (12	?)
	b)		nposite rods? Explain	210	210 (4)	210
Q4	a)	UDL per meter the beam may carry, if the)
	b)	· · · · · · · · · · · · · · · · · · ·	a circular cross sectio	on beam subjecte	d to (6))
Q5	a)		r the column, when	both of the ends	are (8)	210
	b)	Determine the expression for maximum		n of cantilever be	eam (8))
Q6	a)	12 cm and there are 20 effective turns in it 25 mm. If the same load is dropped from	t. Find the load that c n height of 10 cm o	auses a deflectio n the spring find	n of)
	b)	A hollow shaft of diameter ratio 3/8 is req maximum torque being 20 % greater than	uired to transmit 600 the mean. The shear	k₩ at 110 rpm, stress is not exc	eed	210
	Q4 Q5	b) Q4 a) b) Q5 a) b) Q6 a)	 Long Answer Type Questions (Answer A Establish the relation between Young's modulus (K). b) How the thermal stresses developed in content of the thermal stress developed in content of the thermal stress of the text of the text of tex	 a) Establish the relation between Young's modulus (E), modulus of modulus (K). b) How the thermal stresses developed in composite rods? Explain 210 a) A rectangular beam 300 mm deep is simple supported over a spuble per meter the beam may carry, if the allowable bending s (Take I= 8 x 10⁶mm⁴) b) Explain the distribution of shear stress of a circular cross section transverse load W. a) Derive an expression for crippling load for the column, when thinged. b) Determine the expression for maximum slope and deflection carrying a concentrated load 'W' at its free end. c) A helical spring is made of 6 mm diameter steel wire. The mean 12 cm and there are 20 effective turns in it. Find the load that of 25 mm. If the same load is dropped from height of 10 cm or deflection and maximum stress induced in the spring. (Take G_s= b) A hollow shaft of diameter ratio 3/8 is required to transmit 600 maximum torque being 20 % greater than the mean. The shear to 63 MN/m². And angle of twist in length of 3 meters not to exce 	 Long Answer Type Questions (Answer Any Two out of Four) a) Establish the relation between Young's modulus (E), modulus of rigidity (G) and modulus (K). b) How the thermal stresses developed in composite rods? Explain 210 c) A rectangular beam 300 mm deep is simple supported over a span of 4 meters. W UDL per meter the beam may carry, if the allowable bending stress is 120 N/m (Take I= 8 x 10⁶ mm⁴) b) Explain the distribution of shear stress of a circular cross section beam subjecte transverse load W. c) Derive an expression for crippling load for the column, when both of the ends hinged. 210 210 210 210 210 210 210 210 210 210	 Long Answer Type Questions (Answer Any Two out of Four) a) Establish the relation between Young's modulus (E), modulus of rigidity (G) and bulk modulus (K). b) How the thermal stresses developed in composite rods? Explain 210 210 (4) a) A rectangular beam 300 mm deep is simple supported over a span of 4 meters. What UDL per meter the beam may carry, if the allowable bending stress is 120 N/mm²? (Take I= 8 x 10⁶mm⁴) b) Explain the distribution of shear stress of a circular cross section beam subjected to transverse load W. a) Derive an expression for crippling load for the column, when both of the ends are hinged. 210 210 210 210 210 210 210 (6) b) Determine the expression for maximum slope and deflection of cantilever beam carrying a concentrated load 'W' at its free end. c) A helical spring is made of 6 mm diameter steel wire. The mean diameter of the coil is 12 cm and there are 20 effective turns in it. Find the load that causes a deflection of 25 mm. If the same load is dropped from height of 10 cm on the spring find the deflection and maximum stress induced in the spring. (Take G_s=80 Gpa) b) A hollow shaft of diameter ratio 3/8 is required to transmit 600 kW at 110 rpm, the maximum torque being 20 % greater than the mean. The shear stress is not exceed to 63 MN/m². And angle of twist in length of 3 meters not to exceed 1.4⁰. Calculate the

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210