10		1	210	210	210	210	210	210	210
			Registra	ition No :					
T	ſotal ı		ber of pa	iges : 03	210	210	210	210	B.Tech PCE3I104 ¹⁰
10	Ans	wei	Question	n No. <u>1</u> (Part-I) v	BRANCH Time : Max Ma Q.COD which is comp Pa	ANSFER - I : CHEM, PT 3 Hours arks : 100 E : E929 ulsory, any o rt-III.		and <u>any</u> t	
			Assu		tations and an ver all parts of		ata wherever neco at a place.	essary.	
					Ра	rt – I			
10	Q1	a)			210	210 vity depend ι	210 upon the total pres	210 ssure and	(2 × 10) ₂₁₀
		b)	•		nces of the dimer	nsionless arou	ıps in mass transfer.		
		c)		equimolar counter		J			
0		d)		e Gilliland's equ		ain each ter	ms used in it. Me	ention its 210	210
0		e)		he physical signifi	- · ·		LIU	LIU	
		f)	What are	the factors that in	nfluence H _{tOG} and	N _{tOG} of a pac	ked tower?		
		g)	What hap time?	opens if a column	heated by open	steam is ope	erated at total reflux	for a long	
		h)	What are	the common pac	kings and materi	als for a coolir	ng tower?		
0		i) :	₂₁ What is w	vet bulb depressio	on? ₂₁₀	210	210	210	210
		j)	What are tower?	e the important fa	actors that influe	nce the desig	n and operation of	a cooling	
					Par	t – II			
			Focused	-Short Answer T	ype Questions(Answer Any	EIGHT out of TWEL	_VE)	
0	Q2	1	21 Answer t	the following que	estions:	210	210	210	(6 × 8) 210
		a)	contains temperate and the r	70 % N ₂ and 30 ure is 20° C and the second structure of the second struc	% O_2 while vess he total pressure of N ₂ from vesse	el 2 contains is 2 atm. Cal I 1 to 2 and (i	and 20 cm in length. 30 % N_2 and 70 % culate (i) the steady ii) the same quantiti 1 atm.	6 O ₂ . The state flux	
0		1	210	210	210	210	210	210	210

210	210	210	210	210	210	210	210

0	b)	In a reactor the gas (A) is sparged in an agitated suspension of catalyst particles, 0.5 mm in diameter, in a liquid (B). The gas dissolves in the liquid and is transported to the surface of the catalyst particles where it undergoes an instantaneous reaction. In a particular case the concentration of A in the liquid is 0.8kmol/m ³ , the rate of reaction is 3.0x10 ⁻⁶ kmol/m ² .s based on the external surface area of the catalyst particles, and the diffusivity of A in the liquid is 6.8x10 ⁻¹⁰ m ² /s. If the diffusion of dissolved A to the catalyst surface occurs through a stagnant film surrounding a particle, calculate the thickness of the liquid film.	210
	C)	Discuss in detail the types of mass transfer coefficients.	
	d)	Determine the relation between the gas-phase mass transfer coefficients $k_{\rm G}$ and $k_{\rm Y}$	
0	e)	²¹ Describe the penetration theory with a neat model ₁₀ 210 210	210
	f)	Discuss the important criteria for the selection of solvent and stripping medium for absorption.	
	g)	In the n th tray of an absorption column: $G_s = 100 \text{ kmol/h}$; $L_s = 120 \text{ kmol/h}$; $y_{n+1} = 0.15$; $x_n = 0.08$; and $x_{n-1} = 0.06$. The equilibrium relation is linear in the form $y = 1.02 \text{ x}$. If the liquid on the tray is well mixed, calculate the Murphree tray efficiency.	
	h)	Discuss about deviation from ideality and formation of azeotropes.	
0	i)	²¹ Derive the Fenske's equation. ²¹⁰ 210 210 210 210 210	210
	j)	A charge of 52kmol of a mixture of benzene and chlorobenzene having 58mol % of the less volatile is to be batch distilled. If 30 moles of the solution is vaporized and condensed as the distillate, calculate the concentration of the accumulated distillate. The relative volatility of benzene in the mixture is 4.0.	
	• •		

k) Discuss the construction and working of a counter flow induced draft cooling tower with a neat diagram.

Discuss the hygrometer method of humidity measurement. I)

Part – III

Long Answer Type Questions (Answer Any Two out of Four)

- Q3 The gas phase mass transfer coefficient for the evaporation of a drop of ethyl alcohol (16) in a stream of air at 300 K and 1.2 bar pressure is $k_G = 2.5 \times 10^{-6}$ kmol/s.m².mmHg. Calculate the values of the mass transfer coefficient if the driving force is expressed in terms of difference in (i) mole fraction of alcohol in the gas phase, (ii) mole ratio of alcohol, (iii) concentration of alcohol in kmol/m³. Also calculate the coefficient F_G. If the diffusivity of alcohol in air is 0.1 cm²/s at 0^oC, estimate the thickness of the stagnant gas-film. Vapour pressure of alcohol = 0.09 bar at 300 K.
- Q4 SO₂ is scrubbed from an air stream in a small packed tower by contacting it with an organic solvent. The feed gas contains 2 % SO₂ by volume and 90 % of it is to be absorbed. The total gas rate is 140 m³/h at 20^oC and 1 bar absolute pressure. The liquid enters the column at 1.2kmol/h.

Given: the overall mass transfer coefficient $K_G = 3 \times 10^{-4} \text{kmol/m}^2 \text{.s.} \Delta p$ (Δp in bar); the effective gas-liquid contact area = 100 m²/m³ of packed volume; and slope of the equilibrium line m = 0.15.

Determine the number of overall gas phase mass transfer units and the packed height if the column is 0.5 m in diameter.

(16)

210	210	210	210	210	210	210	210

- Q5 An aqueous solution of ethanol (29 mass % ethanol) is to be enriched into a top (16) product having 90 mass % alcohol. The bottom product must not contain more than 3 mass % alcohol. The feed enters the column at 40°C at a rate of 5100 kg/h. The reflux ²¹is at its bubble²point and the reflux ratio is 1.2. Enthalpy of the feed = 4790 kJ/kmol.
 - Determine:

The number of ideal trays required using the Ponchon-Savarit method;

The heat duty of the condenser and of the reboiler.

The enthalpy concentration (kJ/kmol; reference states: pure liquids at 0°C) and the VLE data at the operating pressure of 1 atm are given below.

	х, у	0.0	0.0417	0.0891	0.1436	0.207	0.281
21	0 H L	27/540	712510	6880	210 6915	7097	7397 210
	Hv	48150	48250	48300	48328	48436	48450
	х, у	0.37	0.477	0.61	0.779	1.0	-
	HL	7750	8105	8471	8945	9523	-
	Ηv	48450	48631	48694	48950	-	-

2	¹⁰ x	0.0	0.00792	0.016	² 0.0202	0.0417	⁰ 0.0891	0.1436	0.281	0?37
	У	0.0	0.0850	0.1585	0.191	0.304	0.427	0.493	0.568	0.603
	x	0.477	0.61	0.641	0.706	0.779	0.86	0.904	0.95	1.0
	у	0.644	0.703	0.72	0.756	0.802	0.864	0.902	0.9456	1.0
							•			

Q6

A sample of air has a dry bulb temperature of 35°C and wet bulb temperature of 25°C at a total pressure of 1 atm.

Determine humidity, enthalpy, dew point, humid volume, and humid heat; If the sample of air is heated to 48°C, what will be its wet bulb temperature? How much heat is rejected if 1 kg of air (dry basis) is cooled down from 35 to 18°C? If the air sample is heated to 48⁰C and its pressure doubled, what would be its relative humidity and dew point?

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

(16)