	2	10	210	210	210	210	210	
			<u>.</u>				_	
	Re	gistration No	•:					
Tota	al Nu	umber of Pag	jes : 02				B.Tec	ch
	2	10	210 2 rd Sama	210	210 Book Exemine	210	₂₁₀ PME3I10)4
				ster Regular / MATICS & DYI				
					CH : MECH			
					: 3 Hours			
					larks : 100 DE : E797			
Α	nsw	er Question	No.1 (Part			v eight from Pa	rt-II and any two	
		10	210		Part-III.	210	210	
		-	The figure	es in the right h	nand margin ir	dicate marks.		
				F	Part- I			
Q1		Short Answe	er Type Que	estions (Answei	r All-10)		(2 x 10))
	a)	-		chanism and mac	chine.			
	b)	What is Gruel						
	c)2 d)			ntage and transm	•	i mechanism.	210	
	u) e)	What is a pre-		dy theorem? Exp ?	nain.			
	c) f)	•	•	s of gear trains.				
	ý g)	What is comp		-				
	h)	What is mean	it by the exp	pression 'friction	circle' and friction	n axis?		
	i)	What is creep						
	j) 2	Distinguish be	etween brak	kes and dynamor	neters. ²¹⁰	210	210	
					art- II			
Q2	2)			* *		r Eight out of Twe or each one of the		5)
	a) b)					ic chain, and 4. Inv		
	c)			a double slider c	• •			
	d) 2	Explain the C	hebychev s	pacing ²¹⁰	210	210	210	
	e)					nd crank-pin effort		
	f)		• •	es an expression into consideratio		quired to raise a l	oad with a	
	g)	-	-			n moment of a co	nical pivot	
	5/	assuming Uni						
	h)	Derive the co	ndition for t	ransmitting the m	naximum power i	n a flat belt drive.		
	i) 2	Describe (with	h sketch) th	e working princip	le of Différential	gear of an automo	bile. ²¹⁰	
	j)	What is the di torsion dynam		tween absorption	n and transmissi	on dynamometers	? What are	
	k)	-		es the Bevis-Gibs	son flash light dv	namometer.		
	I)	Describe the			5,			
		10	210	210	210	210	210	

	2	210 210	210	210	210	210		210
			Pa	art-III				
		Long Answer Type Qu	estions (Answer	Any Two out of F	Four)			
Q	3a)		for the magnitud	de and direction	of coriolis cor	mponent of	(8)	
0		acceleration.	0.50		010	010	(0)	010
)	D)∕	²¹ Draw the acceleration di	agram of a slider	crank mechanism.	210	210	(8)	210
Q4	4a)						(4)	
	b)						(12)	
		compound gear D - E.						
		gear D. The number of t the speed and direction						
		r.p.m. clockwise.	-	210	210			04.0
			210			210		210
Q	5a)						(8)	
		contact surfaces are 10 force is limited to 1 kN.						
		find the power transmitte			la assuming a	morrir wear,		
	b)	A conical pivot bearing	150 mm in diam	neter has a cone	angle of 120°.	If the shaft	(8)	
		supports an axial load of						
	2	lost in friction when the 21 2. Uniform wear.		00 r.p.m., assumin	12 1. Uniform provenue 210	ressure and 210		210
Q	6	The following data refer	to an open belt dr	rive :			(16)	
		Diameter of larger pulle						
		between two pulleys = 2						
		belt = 0.4; Maximum ten Find the power transmitt		•	sipping – 1200	JIN.		
		It is desired to increase			o methods you	will select?		
	2	²¹ 1. Increasing the initial te	ension in the belt	by 10 per cent.	210	210		210
		2. Increasing the coeffic				and belt by		
		10 per cent by the applic Find, also, the percentage						
		י וויט, מוסט, נווב אבוטפוונמנ	je meredse m pov		11 635.			

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210 210 210 210 210 210	210 210 210
-------------------------	-------------