	– • • • •	—	- <u> </u>	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	
	Registrat	ion No :				
Tota	al Number	of Pages : 02				B.Te
	210	3 rd Seme	ester Regular / I	Back Examinat	tion 2018-19	210 PCI3I1
			GEOTECHNIC	AL ENGINEERI		
				CH : CIVIL 3 Hours		
			Max Ma	arks : 100		
۸n		tion No. 1 (Part		DE : E881	EICUT from Do	rt II and any TW
AII	210	210 210	210 from		210 210	rt-II and any TW 210
		The figure	es in the right h	and margin in	dicate marks.	
~	Cha	4 Anomer Turne O		art- I		/0 × 4
Q1		rt Answer Type Q e at least five clay	•	er All-10)		(2 x 1
	b) How	do you define the	gradation coeffici			
	-	some examples of t is the importance		•	210	210
	e) Wha	t is capillary siphor	ning?	-		
	-	rentiate between 'i ch the stress ~ stra	•		a medium dens	e sand and
		nse sand on a sing			, a medium dens	
		ain 'face failure' 'sl				
		t is the effect of po t is the effect of su				
	210	210	210	210	210	210
Q2	Focu	used-Short Answe		art- II ıs- (Answer An	y Eight out of Ty	velve) (6 x
	a) A cu	be of dried clay ha	aving sides 4cm I	ong weighs 110	gm. The same c	ube of soil,
		n saturated at unch il solids and the vo	-	eigns 135 gm. D	etermine the spe	cific gravity
	b) Discu	uss the IS soil clas	sification system			
	-	ne activity of a soil. ne 'critical hydrauli		•		and how to
	preve	ent it.	•		•	
		ulate the total, effe om of a lake 6 m				
		ness of more than	-			-
	•	fin and the of a sile				
		•	may be assumed	to be 2.66.	-	60 am and
		pillary permeability	may be assumed test was conduc	to be 2.66. ted in two stages	under a head of	
	180 ₂₁₀ from	pillary permeability cm, respectively a 1.5 cm to 7 cm in	may be assumed test was conduc t the entry end. 7 minutes. In the	to be 2.66. ted in two stages n the first stage second stage it	under a head of , the wetted surf advanced from 7	ace moved cm to 18,5
	180 ₂₁₀ from cm ir	pillary permeability cm, respectively a 1.5 cm to 7 cm in n 24 minutes. The	may be assumed test was conduc t the entry end. 7 minutes. In the degree of satura	to be 2.66. ted in two stages n the first stage second stage it tion at the end o	s under a head of , the wetted surf advanced from 7 of the test was 85	ace moved cm to 18,5 5% and the
	180 210 from cm ir poros g) Why	pillary permeability cm, respectively a 1.5 cm to 7 cm in n 24 minutes. The sity was 35%. Dete compaction is rec	may be assumed test was conduct t the entry end. I 7 minutes. In the degree of satura ermine the capilla quired? How the	to be 2.66. ted in two stages n the first stage second stage it tion at the end o ry head and the o soil properties g	s under a head of , the wetted surf advanced from 7 of the test was 85 coefficient of perm jet affected by co	ace moved cm to 18,5 5% and the neability. ompaction?
	180 210 from cm ir poros g) Why What	pillary permeability cm, respectively a 1.5 cm to 7 cm in n 24 minutes. The sity was 35%. Dete compaction is rec t are various field	may be assumed test was conduct t the entry end. I 7 minutes. In the degree of satura ermine the capilla quired? How the	to be 2.66. ted in two stages n the first stage second stage it tion at the end o ry head and the o soil properties g	s under a head of , the wetted surf advanced from 7 of the test was 85 coefficient of perm jet affected by co	ace moved cm to 18,5 5% and the neability. ompaction?
	180 210 from cm ir poros g) Why Wha Vibro h) A lay	pillary permeability cm, respectively a 1.5 cm to 7 cm in n 24 minutes. The sity was 35%. Dete compaction is red t are various field oflotation. yer of soft clay is	may be assumed test was conduct t the entry end. I 7 minutes. In the degree of satura ermine the capilla quired? How the compaction tech 6 m thick and lie	to be 2.66. ted in two stages n the first stage second stage it tion at the end of ry head and the soil properties g nniques? Discus	y constructed bu	ace moved cm to 18,5 5% and the neability. ompaction? and use of ilding. The
	180 210 from cm ir poros g) Why Wha Vibro h) A lay weig	pillary permeability cm, respectively a 1.5 cm to 7 cm in n 24 minutes. The sity was 35%. Dete compaction is red t are various field oflotation. yer of soft clay is ht of sand underly	may be assumed test was conduct t the entry end. If 7 minutes. In the degree of satura ermine the capilla quired? How the compaction tech 6 m thick and lig ing the clayey lay	to be 2.66. ted in two stages n the first stage second stage it tion at the end of ry head and the of soil properties g nniques? Discus es under a newl ver produces a p	s under a head of the wetted surf advanced from 7 of the test was 85 coefficient of perm jet affected by co s the necessity a y constructed bu pressure of 260 k	ace moved cm to 18,5 5% and the neability. ompaction? and use of ilding. The Pa and the
	180 210 from cm ir poros g) Why Wha Vibro h) A lay weig 210 new	pillary permeability cm, respectively a 1.5 cm to 7 cm in n 24 minutes. The sity was 35%. Dete compaction is red t are various field oflotation. yer of soft clay is	may be assumed test was conduct t the entry end. I 7 minutes. In the degree of satura ermine the capilla quired? How the compaction tech 6 m thick and live ing the clayey lay ases the pressure	to be 2.66. ted in two stages n the first stage second stage it tion at the end of ry head and the of soil properties g nniques? Discus es under a newl ver produces a p by 100 kPa. If th	s under a head of , the wetted surf advanced from 7 of the test was 88 coefficient of pern jet affected by co s the necessity a y constructed bu pressure of 260 k ne compression in	ace moved cm to 18.5 5% and the neability. ompaction? and use of ilding. The Pa and the ndex is 0.5,
	180 210 from cm ir poros g) Why Wha Vibro h) A lay weig 210 new comp i) Enur	pillary permeability cm, respectively a 1.5 cm to 7 cm in n 24 minutes. The sity was 35%. Dete compaction is red t are various field oflotation. ver of soft clay is ht of sand underly construction increa	may be assumed test was conduct t the entry end. I 7 minutes. In the degree of satura ermine the capilla quired? How the compaction tech 6 m thick and like ing the clayey lay ases the pressure t. Water content is ethods to determine	to be 2.66. ted in two stages n the first stage second stage it tion at the end of ry head and the of soil properties g iniques? Discus es under a newl ver produces a p by 100 kPa. If the s 40% and specific	s under a head of , the wetted surf advanced from 7 of the test was 85 coefficient of perm jet affected by co s the necessity a y constructed bu pressure of 260 k ne compression in fic gravity of grain	ace moved cm to 18.5 5% and the neability. ompaction? and use of ilding. The Pa and the ndex is 0.5, s is 2.65.

210		210	210	210	210	210	210		210
		'	Discuss the Newmaark What are the character A flow net was channels and 20 pote compute the quantity o	istics of a flow n drawn for an eff ntial drops. If th	et? ective head of 8 r	n. It has 10 numb luctivity is 5.2X10			
210		210	210	210	210	210	210		210
			Long Answer Type O		Part-III	of Four)			
	Q3	Long Answer Type Questions (Answer Any Two out of Four) The total unit weight (γ) of soil is 18.8 kN/m ³ , the specific gravity (G) of the soil solid particles is 2.67 and the water content (w) of the soil is 12%. Calculate the dry unit weight(γ_d), void ratio(e) and the degree of saturation(S _r).							
210	Q4		b) Settlement	s a compression voids ratio at a in void ratio due of the soil stratur ed for 50% co	index of 0.28 and stress of 150kN/n to an increase of n due to the abov	a coefficient of p	ermeability ine: m2. ss and	(16)	210
210	Q5	210	Laboratory results on a 12N/cm ² . In triaxial co chamber pressure of 4 shearing strength of s deposit. The ground w dry unit weight of soil a	mpression test N/cm ² failed at same soil along ater table is at a	of a specimen of an additional strea a horizontal pla a depth of 2.5 m	the soil when su ss of 16 N/cm ² . E ne at a depth of from the ground	ubjected to stimate the 4 m in a	(16)	210
210	Q6	210	Discuss the IS soil class soil are given below. T Draw the grain size dis coefficient. (iii) Determ (iv) Classify the soil acc	The soil has a li stribution curve. ine the percenta cording to Indian	quid limit of 30% (ii) Find coefficien ages of gravel, sa	and plastic limit t of gradation and	of 24%. (i) I uniformity	(16)	210

					-		
			Size(mm)	% Finer			
210	210	210	4.75 ⁰	²¹⁰ 100	210	210	210
			2	93			
			0.425	85			
			0.1	72			
			0.033	61			
			0.018	52			
			0.01	43			
210	210	210	0.006	210 31	210	210	210
			0.0036	22			
			0.002	16			
			0.001	04]		
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
1							

210 210 210 210 210 210 210 210 210