		210 210	210		210	210	210	21
	R	Registration No :						
Tota	al N	umber of Pages : 02						3.Tech
		ord o					PME	E3I102
			-			ation 2018-19		
		210 FLUID	210		'DRAULIC	S MACHINES	210	210
				ime : 3				
			-		нош'я ks : 100			
				2.CODE				
An	swe	er Question No.1 (Part	-1) which i	s comp	ulsory, an	y EIGHT from P	art-II and any	тwo
		The figur		from Pa ght har		indicate marks.		
		210 210	210	Part	210	210	210	210
21		Short Answer Type Qu	lostions (An	-			15	2 x 10)
(1	a)	Differentiate between id	•		•		(2	10)
	a) b)	Discuss the effect of ten				nd dae		
	c)	Write down the express	•	•		•	lly immersed	
	0)	plane and surface incline	-		-		ily ininersed	
	d)	The Reynold's number			0.4.0	is 640 Determin	e the Darcy-	210
	α,	Weisbach factor f for this					e are Barey	
	e)	Define equivalent pipe?						
	f)	Write two characteristics	s of streamlir	nes.				
	g)	Define circulation?						
	h)	What are the function of	guide blade	s in read	tion turbine.			
	i)	What do you mean by p	-					
	j)	Write the function of air	vessel used	in recipr	ocating pum	210 I p.	210	210
				Part	- 11			
2		Focused-Short Answe	r Type Ques	stions-	(Answer An	y Eight out of Tw	velve)	(6 x 8)
	a)	A glass tube of 8 mm in						
		weight of the liquid is 20						
	b)	N/m. Calculate the capil Density of sea water at						210
	D)	pressure of 1 bar. At ce						
		.Determine the pressure			•		, i e e e i i g	
	C)	Discuss with a neat dia	agram show	ing vario	ous position	s of G, B and M	for different	
		stability conditions for fl	•	-	•			
	d)	What are the manometer	ers? How the	e manon	neters are c	lassified? Describ	e the U tube	
	-)	manometer.						
	e)	2Determine the discharge mm diameter and in whi						210
	f)	Obtain expression for Da	•	•		•	•	
	g)	What is patio tube? How	•					
	9/ h)	Derive continuity equation			•	• •	• •	
	i)	In a flow, the velocity v		-				
	-,	passing through (1,2,3).		.,, .				
	j)	Derive an expression f	or the press	sure hea	d due to a	cceleration of the	e piston₂of a	210
	L-)	reciprocating pump.	o oonotructi	anal faat	urse of a se	atrifu and auron		
	k)	With a sketch, explain the A Pelton wheel turbine				• • •	at 1000 mm	
	I)	The net head on the v						
		discharge through the n						
		210 210	210		210	210	210	210

210		210	210	210	210	010	010		210
210		210	210	210	210	210	210		210
210	Q3	A shaft 80 diameter and oil of viscosi a) If the sh oil on th b) If the sh	mm in diamet d 0.3 m long. ty 0.1 kg/ms an naft moves axi ne shaft naft is axially f	Part- tions (Answer An ter is being pushe The clearance, as nd specific gravity (ally at 0.8 m/s, est fixed and rotated a the power required	y Two out of d through a sumed unifor 0.9 imate the res 210 t 1800 rpm,	bearing sleeve m, is flooded wit sistance force ex estimate the res	th lubricating	(16)	210
210	Q4	u= y ³ /3 a) Determ ² b) What is c) Is the flo	B + 2x - x ² y ine the velocity the ² discharge ow irrotational	n a two dimensiona v= xy ² - 2y - x ³ y and acceleration a between streamlin ? If so, determine the stream, and poten	/3 at point (x=1 es passing the correspon	and y=3) nrough (1ዓ3) and ding velocity pot	ential.	(16)	210
210	Q5	Diameter of Inclination of Throat diame ² The distance Specific grav Reading of t The coefficie	the pipe line = f the pipeline w eter = 200 mm be between the vity of the oil flo vity of heavy lic he differential ent of the ventu	vith the horizontal =	= 30 ⁰ f the meter = pipeline = 0.7		210	(16)	210
210	Q6	 A Fransis turbine has a diameter of 1.4 m and rotates at 430 rpm. Water enters the runner without shock with a flow velocity of 9.5 m/s and leaves the runner without whirl with an absolute velocity of 7 m/s. The difference between the sum of the static and potential heads at entrance to the runner and at the exit from the runner is 62 m. The turbine develops 12.25 MW. The flow rate through the turbine is 12 m³/s for a net head of 115 m. Find the following: a) the absolute velocity of water at entry to the runner and the angle of the inlet guide vanes. 							
210		² b) the entr		runner blades and runner	210	210	210		210
210		210	210	210	210	210	210		210
210		210	210	210	210	210	210		210

	210	210	210	210	210	210	210	
--	-----	-----	-----	-----	-----	-----	-----	--