210	21		0	210		210		210		210		210	210
		Reç	gistration No	b :									
	Tota	l Nı	Imber of Pa	-									.Tech 531103
210	Ans		r Question N		ENGIN	EERIN BRAN Tii Ma Q.0	IG THE NCH : N me : 3 x Mark CODE	s : 100 : E732	T	CS		210 art-ll and any	210 TWO
210	The	e fig	jures in the			ginind					table	and Refrigera	ation 210
	Q1	a) b)	Short Answer Mention seco "Isentropic pi	ond law o rocess ne	f the ther ed not b	modyn e adial	amics (l batic, bu	l -10) k-p and C					2 x 10)
210		 d) Compare between Rankine and Carnot cycle. e) Mention the Maxwell's equations. f) Write down the refrigerant and absorbents used in Lithium bromide water vapor absorption system. g) What is a tonne of refrigeration? 										210	
210			Differentiate What are ava	rature of l between	heat addi heat pun	ition of ∩p⊧and	a stean refriger closed	n power p ator system a	lant?	210	-	210	210
210	Q2	a) b) c) 21	Focused-Sh Explain Avail Write a short Figure shown three consta engine.	able ener note on r n below s	rgy, Unav unsteady shows a	/ailable /flow pi reversi	e energy rocesse ble hea	Answer / /, Availabi /s. t engine	lity, Irre E _R hav	eversibi ing hea	lity. at inte	ractions with	(6 x 8) 210
				T1=900	ĸ]	T1=50	ЮК		T3=30	юк		
210		21		210 =100 kJ	Y	210 Q2	=50 kJ	210 E _R		210 Q3		210	210
210		21	10	210		210		210 V		210		210	210

210 210 210 210 210 210 210

210

		d) What is a cogeneration plant? What are the thermodynamic advantages of such a plant?		
		e) Give a short notes on Air motors.		
		f) Explain Joule Thompson effect.g) Compare Otto, diesel and dual cycles on the basis of same compression ratio and same maximum pressure ratio.		
10		 h)₂₁Briefly discuss Clausius-Clapeyron equation. 210 210 i) Draw the p-v and T-s diagram for a reversed carnot cycle. 		210
		An inventor claims to have developed a refrigerating device that extracts 50 MJ of heat at 30 K and rejects 60 MJ of heat at 40K and taking in 10 MJ of compressor work. Would you advise investing money to put this device in the market?		
		 j) Air enters an adiabatic compressor at atmospheric conditions of 1 bar, 15°C and leaves at 5.5. bar. The mass flow rate is 0.01 kg/s and the efficiency of the compressor 		
10		is 75%. After leaving the compressor, the air is cooled to 40°C in an after cooler. 21 Calculate i) the power required to drive the compressor ii) rate of irreversibility for the		210
		overall process k) Derive :		
		$\eta_{\rm vol} = 1 + C - C \left(\frac{p_2}{p_1}\right)^{1/n}$		
		for air compressor, where C is clearance ratio, p1,p2 are pressures at inlet and exit of		
10		compressor and n is compression(=expansion) index. I) 210 Derive the COP1 for reversed Bryton cycle. 210 210 210		210
		Part-III		
10	Q3	Long Answer Type Questions (Answer Any Two out of Four) Draw the Aqua-Ammonia vapor absorption cycle and explain its working. In an aqua-ammonia absorption refrigeration system, heat is supplied to the generator by condensing steam at 2 bar, 90% quality. The temperature to be maintained in the refrigerator -10°C, and the ambient temperature is 30°C. Estimate the maximum COP 210 of the refrigerator. If the actual COP is 40% of maximum COP 210 of the refrigerator, what will the required steam flow rate be?	(16)	210
	Q4	Write down the First and Second Tds equations. Based of the Tds equations obtain the Difference in heat capacities as follows	(16)	
		$C_{p} - C_{v} = \frac{TV\beta^{2}}{k_{T}}$		
10		$^{21}\mbox{Where}\ \beta$ and $^{10}k_{_T}$ are the volume expansivity and isothermal compressibility respectively.		210
10	Q5	Show that the overall efficiency of two cycles coupled in series equals the sum of the individual cycle efficiencies minus their product. In a reheat cycle steam at 550°C expands in h.p turbine till it is saturated vapour. It is reheated at constant pressure to 400°C and then expands in l.p. turbine to 40°C. if the moisture content at turbine exhaust is given to be 0.15, find i) the reheat pressure ii) ²¹ the pressure of the steam at inlet to the h.p. turbine iii) the net work output per kg iv) cycle efficiency. Assume all processes are ideal.	(16)	210
	Q6	With the help of p-v and T-s diagrams, show that for the same maximum pressure and temperature of the cycle and the same heat rejection, Diesel cycle efficiency is more than that of Otto cycle efficiency.	(16)	

An air standard cycle Dual cycle has a compression ratio of 16 and a compression begins at 1 bar, 50°C. The maximum pressure is 70 bar. The heat transferred to the air list constant pressure is equal to that at constant volume. Estimate(i) the pressures and

²¹ at constant pressure is equal to that at constant volume. Estimate²(i) the pressures² and temperatures at cardinal points of the cycle (ii) the cycle efficiency (iii) the m.e.p. of the cycle. Assume Cp=1005 J/kgK and Cv=718 J/kgK.