	<u></u> 1	0 210	210	210	210	210	
	Reg	gistration No :					
]	
ota		mber of Pages : 02				PEI3	Tech BI103
	21	⁰ 3 rd Sem	nester Regular /			210	
			ENERGY CON	/ERSION DEVI AEIE, EIE, IEE	-		
			Time	: 3 Hours			
				arks : 100 DE : E934			
Α		er Question No.1 (Pa	art-1) which is co	ompulsory, any	-	-	vo
	21		210 from res in the right h		210 dicate marks.	210	
			-	·			
Q1		Short Answer Type C		'art- I r All-10)		(2)	c 10)
	a)	Which type of dc mot constant speed?	or would be suital	ole for high start	ing torques drives	s but fairly	
	b)	What is a leakage flux		-			
	21 C)	to have no leakage flux What are the reasons t		210 ills to start?	210	210	
	d)	Why a three phase alte	ernator is called a s	synchronous mad		700 rom	
	e)	The rotor speed of a 4 Determine (a) the sync					
	f) g)	How the direction of sin A6-pole, three-phase a				distribution	
	•	factor, and the winding	factor.		-		
	h) 21	•The relative amotion asynchronous of an inc			ing stator field	is always	
	i) i)	Is it always possible to What are the different	start an induction	motor by applying			
	j)		·				
Q2		Focused-Short Answ		art- II s- (Answer Any	/ Eight out of Twe	elve) (6	x 8)
	a)	Explain in neat cons	tructional details	about the DC	machines with its	s principle	,
		operation of generation Distinguish between th	ne excitation current	nt, the core-loss		0	
		current of a transformer load and with load at la			ng all the compon	ents at no	
	C)	Cite the differences b	etween a cylindri	cal and a salien	t-pole rotor. Enur	merate the	
	d)	advantages and drawb What do you mean			ive briefly about	t practical	
	e)	commutation phenome Define the residual em			is operating chara	acteristic of	
		separately excited dc g	generator.	LIU	210	LIU	
	f)	Explain the following tand full pitch winding,			ribution factor, and	d fractional	
	g) h)	Explain the principle of Describe the different	f operation of an in	duction motor. Fi			
	,	List out the advantages	s and disadvantage	es of each metho	ods.	-	
	i)	A 120-Vshunt motor ta armature winding re		•			
	21	Determine the efficient 2.4 kW.					

210		210	210	210	210	210	210		210
210		 k) Descr l) An 8 runnin V. The 	e the e.m.f. equation be the principle of pole dc shunt ger g at 500 r.p.m. sup armature resistan ure current, the indu	operation of syn lerator with 778 oplies a load of 1 ce is 0.24 ohm a	chronous motor a wave-connecte 12.5 ohm resistar and the field resi	d armature con nce at terminal v stance is 250 of	ductors and oltage of 50		210
	Q3	Discus	Answer Type Que as the types of DC generator.	stions (Answer			mf equation	(16)	
210		210turns.	rave-wound armatu The flux per pole ctor is 20 A. Deterr	s 0.5 Wb. The a	armature speed	is 600 rpm. The	current per		210
	Q4		n the basic principhase AC motors.	ole of starting s	single phase ind	uction motor.	Classify the	(16)	
210		clockv ₂₁₀ directi	5-V, 60-Hz, 4-p visedirection at a on ofrotation and (I 5Ω , determine the	speed of 1710 b) in the _l opposite	rpm. Determine e direction. If the	its per-unit slip rotor resistance	o (a) in the		210
	Q5	Discus	ss the construction	and principle of	operation of sing	le phase transfo	rmer.	(16)	
210		$R_{H} = 0$ $X_{mH} = 0$ and 0.	arameters of a 12-k 0.6Ω , $X_H = 1.2\Omega$, $= 1.2k\Omega$. The transfer 866 pf lagging. Det nsformer.	$R_{H}=0.6\Omega$, $R_{H}=0.6\Omega$	$R_L = 0.1\Omega, \qquad X$	$K_L = 0.3\Omega$, K_L	$P_{cH} = 3.2k\Omega$,		210
	Q6		parallel operation of alter		required? Give t	he necessary co	onditions for	(16)	
210		210 of 0.25 210 at rat	0-KVA, star-connect 5 ohm per phase a ed load and unity ntage voltage regul	nd synchronous / power factor	(i) no-load e.m	ohm per phase	. Determine		210
210		210	210	210	210	210	210		210

210 210 210 210 210 210 210 2

210 210 210 210 210 210 210 210