210	I	Regi	istration No ₂₁₀ 210 210 210 210	210
	Tota	al Nu	umber of Pages : 02 B.Tec	
			PEI3I00 3 rd Semester Regular / Back Examination 2018-19 ELOCTROMAGNETIC FIELD THEORY BRANCH : AEIE, EIE, IEE	1
210		210	210 Time : 3 Hours 210 210 Max Marks : 100 Q.CODE : E886	210
	Ar	ารพ	er Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III.	
			The figures in the right hand margin indicate marks.	
			Part- I	
210	Q1	210 a)	Short Answer Type Questions (Answer All-10) 210 210 (2 x 10) Find the constant 'p' so that vector $V = (x + 3y)a_x + (y - 2x)a_y + (x + pz)a_z$ is solenoidal.) 210
		b)	What is the significance of Stoke's theorem?	
		c)	What is Polarization ?What are its types.?	
		d)	State uniqueness theorem.	
		e) f)	Define skin depth. Derive its relation with attenuation constant. Define phase velocity and group velocity and obtain relation between them.	
210		g)	What are the characteristics of TE waves? ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰	210
		h)	What is the significance of Gauss's divergence Theorem?	
		i)	What is the inconsistency of Ampere's circuital law? What are the conditions a line to be lossless?	
		j)	what are the conditions a line to be lossless?	
			Part- II	
	Q2		Focused-Short Answer Type Questions- (Answer Any Eight out of (6 x 8))
210		21) ⁰	Twelve) Find conduction & displacement current ² densities in a ²¹ material having ⁰ conductivity of 10^{-3} S/m & ϵ_r = 2.5 if the electric field in the material is E = 5.0 × 10^{-6} sin (9.0 × 10^{9} t) V/m.	210
		b)	Discuss the reflection of plane wave at the interface of conductor for oblique incidence.	
		C)	Derive the equation of continuity for time varying fields.	
210		d) 210	Write Maxwell's equation in free space for the time varying fields both in differential and integral form. Why these equations are not completely symmetrical?	210
		e)	Define uniform plane wave propagation. Discuss its properties. A uniform plane	
			electromagnetic wave propagating in air is given by $E = ix \cos [wt - \frac{2\pi}{\lambda}y]$.	
		6	Derive by using the Maxwell's equations, the expression for the vector magnetic field.	
210		f) 210	State Coulomb's law. Four like charges of 30 J/C each are located at the four corners of a square, the diagonal measures 8m. Find the force on a 100 J/C located 3m above the center of the square. ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰	210
		g)	What do you mean by transmission line? Derive an expression for transmission	
		b)	line equations.	
		h) i)	State Poynting Theorem. Give an expression for Poynting Theorem. State and explain the electrostatic boundary conditions existing at the boundary	
			between two dielectrics.	
		j)	Derive the expression for capacitance and inductance per unit length for a coaxial cable.	0.4.0
210		k)	The positive Y-axis carries a^0 filamentary current of 2A in the $-a_y$ direction. ⁰ Assume it is a part of a large circuit, Find 'H' at (3,12,-4)	210
		I)	The finite sheet $0 \le x \le 1, 0 \le y \le 1$ on the z=0 plane has a charge density	
			$ \rho_s = xy(x^2 + y^2 + 25)^{3/2} nC/m^2 $. Find i. The total charge on the sheet ii. The electric field at (0,0,5)	
			iii. The force experienced by a -1mC charge located at (0,0,5)	
210		210	210 210 210 210 210	210

210	2	210	210	210 Pa	210 rt-III	210	210		210	
210	Q3	a)	g Answer Type Q It is found that <i>E</i> interface betwee point. Let $V = (A\cos nx)$ constants. Show	uestions (Answ = $60a_x + 20a_y - 1$ n air and a con $(x + Bsin nx)(Ce^{n_y})$	For Any Two ou $- 30a_z mV/m$ at ducting surface $y + De^{-ny}$, wh	a particular poi e. Find D and p here A, B, C ar	p_s at that	(16)	210	
	Q4	a)		ary current of 20	$π$ mA along a_z ven by $E = 50$ c re propagation	, Determine H at $\cos(10^8 t + \beta x)a_y$	x=1, y=-2 : (4,3,2). ,V/ m,	(16)		
210	Q5 2		ii. Find the iii. Determ		$(z)a_x + 8x^2a_y)$ ervative? er the cube 0 <x on of G around</x 	<i>− xa_z,</i> x, y, z<1. I the edge of th	210 e square	(16)	210	
210	Q6		y Ampere's Circ smission line.	cuit law to def	ermine H for	infinitely long	Coaxial	(16)	210	
210	2	210	210	210	210	210	210		210	
210	2	210	210	210	210	210	210		210	
210	2	210	210	210	210	210	210		210	
210	2	210	210	210	210	210	210		210	
210	c	210	210	210	210	210	210		210	