210		210	210	210	210		210	210	210
	F	Regis	stration No :		- <u> </u>	1 1			
		-							
	Tota	al Nu	Imber of Pages : 02						B.Tech
			3 rd Ser	nester Regular	/ Back Ex	aminatio	n 2018-19	Р	EE31001
10		210	210 301	ELÉCTROM	AGNETIC	THEORY	210 10-19	210	210
					l:ELECTI e:3 Hour				
				Мах	Marks : 10	00			
	۸n	SW0	r Question No.1 (Pa		ODE : E88		HT from I	Part₋II and an	
	All	12106	i Question No.1 (Pa		m Part-III.			ait-ii aliu al	
10		210	²The figu	ures in ^a the right	t hand ² ma	rgin indic	ate [®] marks	210	210
					Part- I				
	Q1	a)	Short Answer Type Express the point (3,0			evetem			(2 x 10)
		b)	Define Stokes's Theo			system.			
		c)	State the coulomb's la						
		d)	Define conduction cu						
10		2e) €)	State Poisson's equa		210		210	210	210
		f) g)	What do you mean by What is surface resist						
		9) h)	What is Polarization ?		s.?				
		i)	Write the characterist						
		j)	Define potential field.						
	00				Part- II			T	(0 0)
10	Q2	210 a)	Focused-Short Ans	$= \rho(z+1)a_{\rho} - \rho$				i weive)10	(6 x 8) 210
		u)	11	$B = -\rho \cos\phi d$			L_Z/α_Z		
			At P (4, π/2, -2), find		<i>πρ</i> + 2ροπτρ	up 1 2 uz			
			a. The ar	ngle between A ar					
				mponent of B alo	•				
		b)		nit vector perpend			Court court A		
10		b) ² c)	If $V = x^2 y^2 z^2 \& A = x^2$ Derive the flux densit				210	210	210
		d)	Derive the current eq	•	•		xation time		
		e)	A homogeneous diel		•			ion 2 (x>0) is	
		- /	free space. If $D_1 = 12$,		
		f)	Calculate the capacita						
		g)	What is method of		the case v	where the	line charge	e is above a	
		b)	grounded conducting		n hath diffa	rontial on	d intogral fo	rm with their	
10		2 h)	Discuss all the Maxy physical significance.	210					210
		i)	Calculate the self-ind		ength of an	infinitely lo	ong solenoid		
		j)	Define uniform plane		-	-	-		
		- 1	electromagnetic wave	e propagating in a	air is given	by $E = ix$	$\cos[wt-\frac{2\pi}{2}]$	y] .Derive by	
			using the Maxwell's e				Л		
		k)	State Poynting Theor	•		• •			
10		l) 210	A 60 MHz plane way						210
		- 10	wave velocity u, its w	avelength λ , and t		mpedance	$e \eta$ of the m		

210		210		210	210	210	210	210	210
					Par				
	Q3	a) b)	Let $A = 4x$	$e^2e^{-y}a_x + 8xe^{-y}$	a_y . Determine ∇	any Two out of F $\times [\nabla(\nabla, A)].$ e $\rho_s = \frac{1}{\rho} c/m^2$, c	-	(8) tential at (8)	
210		210	(0,0,h).	210	210	210 ρ ⁻¹ μ, τ	210	210	210
	Q4	a)	Find condu 10 ⁻³ S/m & V/m.	uction & displack $\& \epsilon_r$ = 2.5 if the e	ement current de lectric field in the	nsities in a mater material is E = 5	rial having condu 5.0 × 10 ⁻⁶ sin (9.	uctivity of (8) 0 × 10 ⁹ t)	
		b)	The finite $xy(x^2 + y^2)$	2 + 25) $^{3/2}$ nC/ m ²	² . Find	he z=0 plane ha	s a charge den	sity $\rho_s =$ (8)	
210		210	b. The	e total charge or e electric field at e force experien	: (0,0,5)	210 narge located at (210 0,0,5)	210	210
	Q5	a) b)	An electric	field in free spa . Find the dire	ce is given by E = ection of wave pr	ite sheet of current = 50 cos($10^8 t + \beta$ opagation likes to travela dis	$dx) a_y V/m$,	(8) (8)	
210	Q6	210 a)	0	homogeneous $\frac{\rho_v}{t} + \frac{\sigma}{s}\rho_v = 0$	and isotropic co	nductor, show th	at the charge d	ensity ρ_v (8)	210
		b)	0	transmission lin	e equation.			(8)	
210		210		210	210	210	210	210	210
210		210		210	210	210	210	210	210
210		210		210	210	210	210	210	210
		1.0							
210		210		210	210	210	210	210	210

210 210 210 210 210 210 210	210 210
-----------------------------	---------