The figures in the right hand margin indicate marks.Part-1Q1Short Answer Type Questions (Answer All-10)(2 x 10)a)Define the term Multiset and power set with example.(2 x 10)b)What are disjoint sets ? Give example.210210c)State DE Morgain's laws in Boolean algebra.210210d)Define invertible function with example.210210e)Compare and contrast between directed graph and undirected graph.7 Prove by Boolean algebra that $a+b.c=(a,b)+(a,c)$ 210g)Give an example of graph which has both Hamiltonian circuit and Euler's circuit.N What do you mean by chromatic number?210i)Define POSETS.210210j)Define shortesh path in a graph "with suitable diagram.210210Part- IIQ2Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)(6 x 8)a)Reduce the following Boolean expressions to complete sum of products form: $a, f(a,b,c) = (a'+b)'+a'b$ b. $f(a,b,c) = (a+b)'(ab')'$ (6 x 8)		21	210	210	21	0		210	210	21
PCS31001 31 rd Semester Regular / Back Examination 2018-19 DISCRETE STRUCTURES BRANCH : CSE Time : 3 Hours Max Marks: 100 Q.CODE : E882 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO 2:0 2:0 <td< th=""><th></th><th>Re</th><th>gistration No :</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		Re	gistration No :							
PCS31001 31 rd Semester Regular / Back Examination 2018-19 DISCRETE STRUCTURES BRANCH : CSE Time : 3 Hours Max Marks: 100 Q.CODE : E882 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO 2:0 2:0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td></td<>							•			
 ^{3rd} Semester Regular / Back Examination 2018-19 DISCRETE STRUCTURES BRANCH: CSE Time: 3 Hours Max Marks: 100 Q.CODE : E882 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO are and from Part-III. 210 210 The figures in the right hand margin indicate marks. Part-I 91 Short Answer Type Questions (Answer All-10) (2 x 10) a) Define the term Multiset and power set with example. b) What are disjoint sets ? Give example. c) State DE Morgan's laws in Boolean algebra. 210 210 210 d) Define invertible function with example. c) State DE Morgan's laws in Boolean algebra. 210 210 210 d) Define invertible function with example. c) Compare and contrast between directed graph and undirected graph. f) Prove by Boolean algebra that a+b.c= (a.b) +(a.c.) g) Give an example of graph which has both Hamiltonian circuit and Euler's circuit. h) What do you mean by chromatic number? i) Define POSETS. j) Define shortest path in a graph with suitable diagram. 210 210 210 Poruse that Intersection of two equivalence relations is an equivalence relation. 210 c) Show that Z7 =(0,1, 2, 3, 4, 5, 6) is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R-1 is also an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. 	Tota	l Nur	nber of Pages : 02						Р	
DiscRETE STRUCTURES BRANCH : CSE Time : 3 Hours Max Marks: 100 Q.CODE : E882 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO 2:0 2:0		01	3 rd Seme	ester Regula	r / Back E	xamina	ation	2018-19		2
Time : 3 Hours Max Marks: 100 QCODE : E882 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO 210 The figures in the right hand margin indicate marks. Part-1 Q1 Short Answer Type Questions (Answer AII-10) Q2 20 2 O 210 2 O 210 2 O 210 210 <		21	210				S	210	210	2
Max Marks: 100 Q.CODE :: E882 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO 210 210 The figures in the right hand margin indicate marks. Part-1 (2 x 10) and colspan="2">(2 x 10) and contrast between directed graph and undirected graph. Part-1 Part-1 Octopare and contrast between directed graph and undirected graph. 1 Prove by Boolean algebra that a+b.c= (a,b) +(a,c) (3 (b) (c) (c) (c) 10 Define POSETS. (5) (5) 10 Define shortesh path in a graph with suitable diagram. 210 210 Part-11 Q2 Compare and contrast between directed graph. (6 x 8) 10 Define shortesh path in a graph with suitable diagram. 210										
Q.CODE : E882 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO 210 210 210 210 210 The figures in the right hand margin indicate marks. Part-I (2 × 10) 0 210 210 (2 × 10) 0 210 210 (2 × 10) 0 210 210 210 (2 × 10) 0 210										
210 210 210 210 210 The figures in the right hand margin indicate marks. Part-1 Q1 Short Answer Type Questions (Answer All-10) (2 x 10) a) Define the term Multiset and power set with example. (2 x 10) b) What are disjoint sets ? Give example. 210 210 c) 25 State DE Morgan's laws in Boolean algebra. 210 210 d) Define invertible function with example. 210 210 e) Compare and contrast between directed graph and undirected graph. 70 210 g) Give an example of graph which has both Hamiltonian circuit and Euler's circuit. 10 h) What do you mean by chromatic number? 10 210 210 j) Define shortesh path in a graph with suitable diagram. 210 210 Part-11 Q2 Focused-Short Answer Type Questions: (Answer Any Eight out of Twelve) (6 x 8) a) Reduce the following Boolean expressions to complete sum of products form: a. f(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)(ab')' 210 210 e) Prove that intersection of two equ										
Part I Qart II Qart II <td>Ans</td> <td>wer</td> <td>Question No.1 (Part</td> <td>-1) which is o</td> <td>compulso</td> <td>ry, any</td> <td>' EIGH</td> <td>T from</td> <td>Part-II and ar</td> <td>ıy TWO</td>	Ans	wer	Question No.1 (Part	-1) which is o	compulso	ry, any	' EIGH	T from	Part-II and ar	ıy TWO
Part-I Q1 Short Answer Type Questions (Answer All-10) (2 x 10) a) Define the term Multiset and power set with example. (2 x 10) b) What are disjoint sets ? Give example. (210 (210 c) 2State DE Morgan's laws in Boolean algebra. (210 (210 (210 c) Define invertible function with example. (200 (210 (210 (210 c) Define invertible function with example. (200 (210		21		= • •		-				2
Q1 Short Answer Type Questions (Answer All-10) (2 x 10) a) Define the term Multiset and power set with example. (2 x 10) b) What are disjoint sets ? Give example. 210 210 c) 2 State DE Morgan's laws in Boolean algebra. 210 210 210 c) Define invertible function with example. (2 compare and contrast between directed graph and undirected graph. (1 perior invertible function with example. (2 compare and contrast between directed graph and undirected graph. f) Prove by Boolean algebra that a+b.c= (a.b) +(a.c) (3 Give an example of graph which has both Hamiltonian circuit and Euler's circuit. (4 N What do you mean by chromatic number? (1 Define POSETS. j) Define shortesh path in a graph with suitable diagram. 210 210 Part-II Q2 Part-II Q2 Part-II Q2 Part-II Q2 Part-II Q2 Part-II Q2 Solutions (Answer Any Eight out of Twelve) G (6 x			The figure	es in the righ	nt hand ma	argin i	ndicat	e marks	S.	
 a) Define the term Multiset and power set with example. b) What are disjoint sets ? Give example. c) State DE Morgan's laws in Booléan algebra. 210 210 210 c) Define invertible function with example. e) Compare and contrast between directed graph and undirected graph. f) Prove by Boolean algebra that a+b.c= (a.b) +(a.c) g) Give an example of graph which has both Hamiltonian circuit and Euler's circuit. h) What do you mean by chromatic number? i) Define POSETS. j) Define shortesh path in a graph with suitable diagram. 210 210 Part-II Pccused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 3) a) Reduce the following Boolean expressions to complete sum of products form: a. f(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)(ab')' b) Prove that intersection of two equivalence relations is an equivalence relation. 210 c) Show that Z7 ={0,1, 2, 3,4,5,6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 					Part- I					
 b) What are disjoint sets ? Give example. c) State DE Morgan's laws in Boolean algebra. 210 210 210 d) Define invertible function with example. e) Compare and contrast between directed graph and undirected graph. f) Prove by Boolean algebra that a+b.c= (a.b) +(a.c) g) Give an example of graph which has both Hamiltonian circuit and Euler's circuit. h) What do you mean by chromatic number? i) Define POSETS. j) Define shortesh path in a graph with suitable diagram. 210 210 Part-II Q2 Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8) a) Reduce the following Boolean expressions to complete sum of products form: a. {(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)'(ab')' b) Prove that intersection of two equivalence relations is an equivalence relation. c) Show that Z7 ={0,1, 2, 3, 4, 5, 6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 	Q1		Short Answer Type Qu	estions (Ans	wer All-10)					(2 x 10)
 c) State DE Morgan's laws in Boolean algebra. ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ d) Define invertible function with example. e) Compare and contrast between directed graph and undirected graph. f) Prove by Boolean algebra that a+b.c= (a,b) + (a,c) g) Give an example of graph which has both Hamiltonian circuit and Euler's circuit. h) What do you mean by chromatic number? i) Define POSETS. j) Define shortesh path in a graph "with suitable diagram. 210 210 210 210 210 210 210 210 give an example of graph which has both Hamiltonian circuit and Euler's circuit. h) What do you mean by chromatic number? i) Define POSETS. j) Define shortesh path in a graph "with suitable diagram. 210 210<		•		•		nple.				
 d) Define invertible function with example. e) Compare and contrast between directed graph and undirected graph. f) Prove by Boolean algebra that a+b.c= (a.b) +(a.c) g) Give an example of graph which has both Hamiltonian circuit and Euler's circuit. h) What do you mean by chromatic number? i) Define POSETS. j) Define shortesh path in a graph with suitable diagram. 210 210		-	· · · · · · · · · · · · · · · · · · ·	· · · ·		0		210	210	2
 e) Compare and contrast between directed graph and undirected graph. f) Prove by Boolean algebra that a+b.c= (a,b) +(a,c) g) Give an example of graph which has both Hamiltonian circuit and Euler's circuit. h) What do you mean by chromatic number? i) Define POSETS. j) Define shortesh path in a graph with suitable diagram. 210 210 Part- II Q2 Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8) a) Reduce the following Boolean expressions to complete sum of products form: a. f(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)'(ab')' b) Prove that intersection of two equivalence relations is an equivalence relation. 210 c) Show that Z7 ={0,1, 2, 3,4,5,6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		-	•		jebia.					
 g) Give an example of graph which has both Hamiltonian circuit and Euler's circuit. h) What do you mean by chromatic number? i) Define POSETS. j) Define shortesh path in a graph with suitable diagram. 210 Part- II Q2 Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8) a) Reduce the following Boolean expressions to complete sum of products form: a. f(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)'(ab')' b) Prove that intersection of two equivalence relations is an equivalence relation. c) Show that Z7 ={0,1, 2, 3,4,5,6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 						d undire	ected g	raph.		
 h) What do you mean by chromatic number? i) Define POSETS. j) Define shortesh path in a graph ² with suitable diagram. 210 210 Part-II Pccused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8) a) Reduce the following Boolean expressions to complete sum of products form: a. f(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)'(ab')' b) Prove that intersection of two equivalence relations is an equivalence relation. c) Show that Z7 ={0,1, 2, 3, 4, 5, 6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		f) F	Prove by Boolean algeb	ra that a+b.c=	(a.b) +(a.c)		-			
 i) Define POSETS. j) Define shortesh path in a graph with suitable diagram. 210 210<td></td><td></td><td></td><td></td><td></td><td>nian cir</td><td>cuit an</td><td>d Euler's</td><td>circuit.</td><td></td>						nian cir	cuit an	d Euler's	circuit.	
 j) ²Define shortesh path in a graph ²with suitable diagram. Part-II Q2 Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8) a) Reduce the following Boolean expressions to complete sum of products form: a. f(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)'(ab')' b) Prove that intersection of two equivalence relations is an equivalence relation. c) Show that Z7 ={0,1, 2, 3,4,5,6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 				nromatic numb	er?					
 Q2 Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8) a) Reduce the following Boolean expressions to complete sum of products form: a. f(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)'(ab')' b) Prove that intersection of two equivalence relations is an equivalence relation. 210 c) Show that Z7 ={0,1, 2, 3,4,5,6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R_is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 			010	a graph ²¹⁰ with s	uitable diag	ram.		210	210	2
 G2 Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8) a) Reduce the following Boolean expressions to complete sum of products form: a. f(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)'(ab')' b) Prove that intersection of two equivalence relations is an equivalence relation. 210 c) Show that Z7 ={0,1, 2, 3,4,5,6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 					Part- II					
 a. f(a,b,c) = (a'+b)'+a'b b. f(a,b,c) = (a+b)'(ab')' b) Prove that intersection of two equivalence relations is an equivalence relation. 210 c) Show that Z7 ={0,1, 2, 3,4,5,6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) 2Prove that If R is an equivalence relation on 2a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) 2Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 	Q2	I	Focused-Short Answe	r Type Questi		wer Ang	y Eigh	t out of 1	Twelve)	(6 x 8)
 b) Prove that intersection of two equivalence relations is an equivalence relation. 210 210 210 210 210 210 210 210 210 210		-	•	•		•	um of p	roducts	form:	
 c) Show that Z7 ={0,1, 2,3,4,5,6} is group under addition modulo 7. d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If R is an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 			(, , , , , ,	•		,	oquiva	lonco rol	ation	
 d) Define and give example of a. Homeomorphic graph b. Complete bipartite graph. e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If Rais an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		\leq	210	210	\leq	0		210	210	2
 e) State and prove Lagrange theorem. f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) 2Prove that If Relis an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) 2Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		•	•							
 f) State Koinsberg seven bridger problem. What is the solution to this problem. Elaborate. g) Prove that If Rois an equivalence relation on a set A, show that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		-	•		norphic gra	pn b. C	ompiet	e bipartit	e grapn.	
 Elaborate. (g) 2Prove that If R is an equivalence relation on 2a set A, show 2 that R-1 is also an equivalence relation on A. (h) Definition of Isomorphic graphs. Give an example. (i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. (j) State and prove Lagrange theorem. (k) 2Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		•								
 g) 2Prove that If Ratis an equivalence relation on 2a set A, show 2 that R-1 is also an equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) 2Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		-	-	i bridger pro	oblem. What	at is th	ne soli	ution to	this problem.	
 equivalence relation on A. h) Definition of Isomorphic graphs. Give an example. i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) ₂Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 				equivalence re	elation on 2	a set A	. shov	v₂that R	–1 is also∩an	2
 i) Show that the edge chromatic number of a graph must be at least as large as the maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) ₂Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		-		-			,			in the second
 maximum degree of a vertex of the graph. j) State and prove Lagrange theorem. k) ₂Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		h) [Definition of Isomorphic	graphs. Give a	an example.					
 j) State and prove Lagrange theorem. k) ₂Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also 		•	•		• •	oh mus	t be at	least as	s large as the	
k) ₂ Suppose R and S are symmetric relation on a Set A. Show that R intersection S is also			•	•	aph.					
		<u> </u>	IU	210	<u> </u>	0		210	<u> </u>	2

210		210	210	210	210	210	210	210
_10		with exa		2 I U	210	2 I U	210	210
	I)	Conside	r G = {1, 5, 7, 11} ι cyclic? b) Find all s					
				F	Part-III			
10		²¹⁰ Long Ar	nswer Type Quest	tions ² (Answe	r Any Two out of F	our) ²¹⁰	210	210
	Q3	a) Cut po b) Simpl c) Euleri			d graph.			(16)
10	Q4	²¹⁰ Conside a) Draw	r the algebraic exp the corresponding E in Polish prefix f	²¹⁰ ression E = (x 2-tree.	210	210	210	210 (16)
	Q5		meant by minim n spanning trees.	um spanning	tree ? Explain pr	im's algorithn	n to find the	(16)
10	Q6	210 Solve the	210 e recurrence relatio	210 D n .	210	210	210	210 (16)
		S(n)+ 5S	S(n-1) +6S(n- 2) = 3	3n2 where S(C)) = 1, S(I) = 2.			
0		210	210	210	210	210	210	210
0		210	210	210	210	210	210	210
10		210	210	210	210	210	210	210
10		210	210	210	210	210	210	210
10		210	210	210	210	210	210	210