R	egis	stration No :	
Tota	∮ ₁ Ŋu		Tech 31104
		DIGITAL ELECTRONICS	
		BRANCH : ECE, ETC	
		Time : 3 Hours Max Marks : 100	
		Q.CODE : E891	
Ans	swe	r Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any T	WO
		from Part-III. The figures in the right hand margin indicate marks.	
		Part- I	
Q1		Short Answer Type Questions (Answer All-10) (2	x 10)
	a) 210	An 8-bit 2's complement numeral system can represent integers in the	210
		range $\frac{210}{10}$ to $\frac{210}{10}$ $\frac{210}{210}$ $\frac{210}{210}$ $\frac{210}{210}$	210
	b) c)	$(24)_b$ + $(17)_b$ = $(40)_b$. Determine b. -46-25. Perform the operation using 2's complement method.	
	d)	Implement X-NOR using NOR gates only.	
	e)	Find the total propagation delay time of a conventional 4-bit adder and a 4-bit adder	
	-	with carry look ahead with the given data.	
	210	Propagation delay of exclusive-OR, AND and OR gate is 10ns, 5ns and 5ns respectively. ¹⁰ 210 210 210 210 210 210	210
	f)	Design Y=AB using multiplexer.	110
	g)	How error can be detected and corrected in received binary bits?	
	h)	Differentiate between asynchronous and asynchronous sequential circuits.	
	i)	What do you mean by figure of merit of a logicc family?	
	j)	Write the VHDL code for the Boolean expression of a 2-input NAND gate. Assume the	
	210	delay of gate is 6ns. 210 210 210 210 210 210	210
		Part- II	
Q2		Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6	5 x 8)
	a)	Simplify the following expression in POS. Implement using NOR only. $F(A, B, C, D) = \pi(0, 1, 2, 3, 4, 10, 11)$	
	b)	Simplify the following Boolean function F, together with the don't care condition'd'. Implement the simplified expression using NAND only.	
	210	$F^{2}(A, B, C, D) = \sum (0, 6, 8, 13, 14)$ 210 210 210	210
		$d(A,B,C,D) = \sum (2,4,10)$	
	C)	Implement a two bit magnitude comparator circuit using 2to4 size decoders.	
	d)	Explain the operation of Full-subtractor circuit. Derive and Implement a Full-subtractor circuit using Half-subtractor.	
	e)	Implement the following function with the help of 4:1multiplexers. F= $\Sigma(1,2,3,5,11,12,15)$	
	²f)	The content of a 4-bit shift register is initially 1101. The register is shifted six times to the right with the serial input being 110101. Show the content of the register after each shift.	210
		Design a MOD-12 counter using MOD-4 and Mod-3 counter. Explain the operation.	

h) The three stage Johnson counter with initial state of $Q_2Q_1Q_0 = 101$ as shown in figure-1 is clocked at a constant frequency of 'f_c'. If the circuit is triggered for six pulses, then draw the corresponding output waveforms of Q_2 , Q_1 and Q_0 in each pulse.

210		210	$\begin{array}{c c} 210 & 210 & 210 & 210 \\ \hline J_2 & Q_2 & J_1 & Q_1 \\ \hline K_2 & \overline{Q}_2 & K_1 & \overline{Q}_1 \\ \hline CLK & \hline \end{array}$	210	210			
210		210 i)	Describe the performance parameters considered in digital integrated circuits.	210	210			
		j)	Using VHDL, design a binary UP counter that counts 0 to 7.					
		k)	With neat circuit diagram, explain a RAM consisting of 4 words of 3bits each.					
		I)	With neat diagram, explain TTL inverter.					
210		210	210 210 Part-III 210 2	210	210			
	Q3	a)	Long Answer Type Questions (Answer Any Two out of Four) Explain the rules of 1's complement addition and subtraction with suitable exa	mple.	(8)			
		b)	Design a 2-bit BCD adder circuit.		(8)			
210	Q4	a) ²¹⁰ b)	Design a four-bit combinational circuit 2's complementer. Show that the circuit can be constructed with exclusive-Or gates. Assuming two numbers of 4-bit each, mention the overflow rules in addition and subtraction operation. Hence, design and explain a 4-bit adder-subtractor circuit.					
	Q5	a)	What is race-around condition? How does it get eliminated in a Master-slave (8) configuration? Explain with neat diagrams.					
		b)	Design a 4-bit synchronous counter using J-K flip-flops. Use K-maps.		(8)			
210	Q6	2 a) b)	Explain in brief the three modeling styles in VHDL. 210 Explain the working of basic TTL NAND gate with a neat diagram. Descri collector and Totem-pole output.	be Open	(8) (8)			
210		210	210 210 210 210 2	210	210			

210 210 210 210 210 210 210 210 210

210 210 210 210 210 210 210 210 21