	210	210	210	210	21	0	210	
R	eais	stration No :						
IX	ဗၝ၊							
Tota	l Nu	mber of Pages :	02					B.Tec
	210	210	1 st Semester Ba	210		0	210 15B	S110
				CK Examinati	ion 2018-1	9		
			O, AUTO, BIOMEI	D, BIOTECH,				
EL			°C, FASHION, FA1 IETTAMIN, MINEF		•	•	•	INE,
	I		•	ie : 3 Hours		, PLASTIC	, IEATILE	
				Marks : 100				
	210	210		ODE : 2847	21		210	4
A	nsw	er Question No.1	(Part-1) which is	compulsory	, any eign	t from Par	τ-II and any	τωο
		The f	igures in the righ		in indicate	marks.		
				- Deut I				
Q1		Short Answer Tvr	e Questions (Ansv	Part- I ver All-10)			ť	2 x 1(
	a)	What information a	ire conveyed by ψ ai	nd ψ2?				
	b)		e-Broglie wavelengt	h of an electroi	n travelling	at 5% of th	e speed of	
	C)	light? What are the	Miller indices, if	the plane	intersects	the crvs	tal lattice	
	,	at a, 2b,3c ?				-		
	d)		en the triple point ar					
	e)		nd Br ⁻ are 169pm ar ination number in Cs		pectively. P	redict the s		
	f)	The time for half-co	ompletion of a reaction	on is changed				
	210	initial concentration reaction.	n is changed from (0.60 to 1.2 mol	lit ⁻¹ . Deteri	mine the or	der of this	
	g)		reaction for propane	e fuel cell.				
	h)		ect gas are expande			m⁻² to 2Nm	⁻² at 310K.	
	i)		ergy associated with sent the rate of the r					
	j)		$/T_2$ gives heat engin			%?		
	210	210	210	Part- II10	21	0	210	
Q2	210		nswer Type Questie					(6 x 8
	a)		of reactants and ra	ite for the read	ction: A + E	$3 \rightarrow \text{are as}$	follows at	
		300K: SI No.	[A], mol/lit	[A], mol/l	it	Initial rate)	
		1	2.5 x 10 ⁻⁴	3.25 x 10	-4	5.0 x 10 ⁻⁴		
		2	5.0×10^{-4}	6.5 x 10 ⁻¹		4.0×10^{-3}		
	210	-	1.0 x 10 ⁻³ rder with respect to a	1.3 x 10 ⁻⁷ A and B?(ii) rate		1.6 x 10 ⁻² it 300K	210	
	b)		ar orbital configurati				e magnetic	
	-)		length among these				0 0 3	
	C)		ice-centered cubic e th of the edge of th					
		element.				ioning noou		
	d)		I: Cd I CdCl ₂ (satura					
	210	reaction. 210	vely. Calculate the	change in fre	e energy		py of this	
			bic crystal possess					
	e)							

210		210	210	210	210	210	210	210		
210		f) g) ²¹⁰ h)	At unit atmospheric pre- was used to determine electrode compartment the pH of this unknown The catalysed decompart reaction is 50% completer reaction if 50% of this matching Prove that $[\delta V/\delta T]_P = 0$	the pH of a t. The emf of the solution. Reduc position of hydro ted in 1 hour a eaction is comp	in unknown solu: e cell at 25ºC was ction potential of C ogen peroxide fo t 420K. Determin	tion which was s found to be 0.4 Cu electrode is + llows first-order e the activation	placed in H ₂ 42V. Calculate 0.36V. reaction. This	210		
210		i) j) k)°	lodine molecule disso quantum of radiation is lodine atom.(Bond ener What is the emf of the Zn(s) I Zn ²⁺ (0.2M) II A The standard emf of th Derive the relationship	s absorbed by rgy of iodine=24 following cell at g ⁺ (0.002M)IAg(e cell is 1.60V.	each molecule, th 0KJ) 25ºC? Write the c s)	nen calculate lat ell reaction.	tice energy of	210		
		I)	Describe the functionin	g of lead storag	e cell with the net	chemical reaction	ons.			
					Part-III					
			Long Answer Type Q	-	-	-		(16)		
210	Q3 Combustion of diborane (B_2H_6) proceeds according to the equation: $B_2H_6(g) + 3 O_2 \rightarrow B_2O_3(g) + 3 H_2O(g)$ with liberation of 480 kcal of heat per mole of B_2H_6 . Combustion of boron produces $B_2O_3(g)$ and released 290 kcal per g atom. Standard heat of formation of $H_2O(g)$ is -57.8 kcal mole ⁻¹ . Calculate the ΔH_f of diborane. Describe the law of thermodynamics which confirms to this relation.									
	Q4		Define phase rule. With systems. How it is diffe				agram of Fe-C	(16)		
210	Q5	210	Distinguish between unit cell and lattice. How many types of Bravais lattices. Determine the number of atoms, coordination number and atomic radii for simple cubic BCC and FCC cell in a cubic lattice.							
	Q6		Differentiate between order and molecularity of the reactions. Describe the salient features of the theory of absolute reaction rates.							
210		210	210	210	210	210	210	210		
210		210	210	210	210	210	210	210		

210 210 210 210 210 210 210 210 21

210 210 210 210 210 210 210 210 210