	210	210	210	210	210	210			
	Registra	tion No :							
	Negistia								
Tot:	al Numbo	r of Pages : 02					B.Tech		
Ote	210	210	210	210	210	210	PBE1B101		
		1 st	Semester Bac	k Examinati	on 2018-19				
_		_	ICS OF MECH		_				
		AEIE, AERO, AI	•	•	•	•			
CL	ECTRICA	L, ENV, ETC, FA MIN	ING, MME, PE			CH, IVIETTA, IV	IINEKAL,		
			•	e : 3 Hours	.,				
	210	210		Marks: 100	210	210			
			-	DDE : E811					
Α	ınswer Qı	iestion No.1 (Pai	•	compulsory, m Part-III.	, any eight fro	m Part-II and	any two		
Th	e figures	in the right hand	_		se of Steam t	able and Refr	igeration		
• • • •	ic figures	_	e are allowed			abic aria itali	igoration		
				D					
Q1	onShor	t Answer₂Type Qu	estions (Answ	Part- I er All-10)	210	210	(2 x 10)		
Ψ.		sify the hydraulic tu		01 7 til 10 7 10	210	210	(= X 1 0)		
	•	sify welding process							
		sify heat exchanger			200°C				
		enthalpy, volume a the p-v and T-s plo							
		sify heat exchanger							
		mine the absolute					ie		
		ometer reads 100 m rentiate between in				m Hg. 210			
		Clausius law of ine		risive properti	C3				
		do you mean by b							
				Part- II					
Q2	Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)								
	•	entiate between Dy entiate between :			•				
		entiate between . niform and non unif	orm flow	210	210	210			
	ií) st	eady and unsteady	flow						
		ain in detail with dia							
		neat sketch, explai ain the working of P			iu a neat pump				
		y write down differe			n governing equ	ations of those.			
	g) Briefl	y explain different	properties of eng	gineering mate			W		
	befor	e manufacturing a schematic layout.	engineering con	nponent.	operations 210	riod out in 1210	20		
	h) With mach		, describe diffe	rent turning	operations carr	ieu out in iath	IC		
	i) Briefl	y discuss about the				ive.			
	j) With	sketch, explain wo	rking of fossil fue	el based stean	n power plant.				
		e mass continuity a down eight comp				aterials used or	nd		
		Ifacturing methods				ateriais useu dii	iu		
		•		5					
	210	210	210	210	210	210			

210	Q3	Part-III Long Answer Type Questions (Answer Any Two out of Four) Define the following, (i) C_p (ii) C_v (iii) H_1 Two kg of a gas enclosed in a cylinder-piston assembly undergo three specific processes of volume expansion: $P_1 = 6$ bar, $V_1 = 0.2m^3 \rightarrow P_2 = 2$ bar, $V_2 = 0.6m^3$ Determine the work done in each following cases (i) P varies as linear function of V (ii) $PV = Constant$ (iii) P remains constant till the volume reaches $0.3 m^3$ and $PV^n = Constant$ after that.											
210	Q4	Write down the 1st law and 2nd law of thermodynamics. Mention key differences. Air at -15°C passes through a heat exchanger at a velocity of 30m/s where its temperature is raised to 800° C. It then enters a turbine with a velocity of 30 m/s and expands until the temperature falls to 650° C. On leaving the turbine, air is taken at a velocity of 60 m/s to a nozzle where it expands until the temperature has fallen to 500° C. if the air flow rate is 2 kg/s, calculate (i) the rate of heat transfer to the air in the heat exchanger. (ii) the power output from the turbine assuming no heat loss (iii) the velocity exit from the nozzle, assuming no heat loss. Take the enthalpy of air as $h=c_pt$, where c_p is the specific heat equal to $1005J/kgK$ and t is the temperature.											
210	Q5			ties of engineering componen		ch are required to	know (16)	210					
	Q6	enthalpy, ent A vessel of v at a tempera	ropy, and volume olume 0.04 m³ co ture 250°C. The	differs from dr e. ontains a mixture mass of the liquid by, and the interna	of saturated wat d present is 9 kg.	er and saturated	steam						
210		210	210	210	210	210	210	210					
210		210	210	210	210	210	210	210					
210		210	210	210	210	210	210	210					
210		210	210	210	210	210	210	210					