

	210	210	210	210		210	210	
	Registrat	ion No :]	
Tota	l Number	of Pages : 02						.Tech E2102
	210			ck Examinatio		9	210	
	RANCH : .	E AEIE, AERO, A L, ENV, ETC, F , METTA, METT	UTO, BIOMEI ASHION, FAT AMIN, MINEF Tim Max	r, IEE, IT, ITÉ,	CHEM, CI MANUFA	C, MANU	ECE, EEE, E ITECH, MARI	•
Ans	swer Ques	stion No.1 (Part	-		ny EIGH	from Pa	rt-II and any	тwo
		The figure		om Part-III.				
		i ne figur	es in the righ	t hand margin	1 Indicate	marks.		
	-			Part- I			(2)	
Q1		Answer Type Qu adio receiver draw			t is used 3	hour/day	•	x 10)
	energy b) ²¹ A 250 secon c) Which	y does it consume kVA, 11 000 V/ dary. Calculate: th type of DC motor	in 7-days? 400 V, 50 Hz ie approximate	single-phase tr values of the pi	ansformer imary and	has 80 tu secondary	rns on the currents.	
	why? d) A 3- r	phase, 4-pole, 50	Hz induction	motor runs at	a speed c	of 1440 rpr	m. What is	
	freque	ency of the rotor cu	urrent?					
		is Biot-SavartLaw					it reduces	
		he core of the tra st of the transform			si permeau	210 210	210	
	g) The to windag	orque required to or ge losses in the ure winding.	Irive a d.c. gen machine are 8	3.0 KW. Calcula	ate the po	wer genera	friction and ated in the	
	i) Define	do mean by time ent response will be the RMS and Ave	e affected by ti erage values of	ime constant? f sinusoidal wav	e form.			
		down the different			DC machir			
	210	210	210	Part- II		210	210	
Q2	a) Minimb) Prove rotatin	sed-Short Answe ization of hysteres the rotation of a r ig flux. the exponential of	is and eddy cu otor in a three	rrent losses is r phase induction	equired in n motor is	transforme in same dir	r. Justify. rection with	6 x 8)
		and KCL satisfies	the law of co	nservation of e	nergy and	charge re	espectively.	
	₂₁₀ Justify e) Startir	ng of DC series mo	210 otor with loading	210 g condition. Jus	tify the stat	ement.	210	
	f) Justify	/ that the quality of	f a R-L-C series	s is reciprocal to	its bandw	idth.		
	h) Induce the ma	the line voltage is ed EMF generated agnetic field. Deriv	d across a coil ve it.	is alternating fo	r a comple	te rotation	of it inside	
	i) Draw motor.	and explain the sp	beed-torque ch	aracteristics of	DC shunt,	series and	compound	
	j) ₂₁₀ The r transfo	magnetizing comported comported component comp	210	210		210	210	
	I) Draw	out the differentiat the equivalent circ r loss and mechar	uit of the three					
	210	210	210	210		210	210	

Part-III									
210	210	210	210	210	210	210	210		

- Q3 a) Why theorems are required even though KCL and KVL exists. Write down the different theorems used in DC circuit analysis. State and explain Thevenin's Theorem. What are the advantages and dis-advantages of this theorem ?
 - b) The four arms of a Wheatstone bridge have the following resistances :
 - 21(AB = 100 ohm; (BC = 10 ohm;)CD = 4 ohm, DA = 50 ohm. A galvanometer of 20 ohmresistance is connected across BD. Use Thevenin's theorem to compute the current through the galvanometer when a p.d. of 10 V is maintained across AC.

- Q4 a)21 What do you mean by an ideal voltage source and practical voltage source? Draw the (8) 21 connection of a practical voltage source with a practical voltmeter.
 - b) Define ideal current source and practical current source and the connection of a practical current source with practical ammeter.

			-							
21.0	0	Using nodal analysis find the different conductances are in siemens (i.e. mho).	branch currents in	the circuit. All	branch	010				
210 Q5 210	b)	Derive the torque developed in armature speed characteristics of a DC motor in α What are the different methods of speed of A DC motor takes an armature current armature circuit is 0.2 Ω . The machine connected with 864 conductors. The flux p is 0.05 Wb. Calculate	of DC motor. Draw a constant power and o control of DC motor. of 110 A at 480 V. e has six poles and	and explain the constant torque The resistance	torque- (region. of the (210 (8) (8) 210				
		(b) the gross torque developed by the arm	ature.							
Q6	a)	a) Define power factor, form factor, peak factor of an alternating sinusoidal wave form. What is guality factor of a coil. Derive guality factor for a coil.								
210	b) 2		ctive resistance in se ge across the resistan nce, reactance and re	nce is 125V and esistance of the	across coil (ii)	(8) 210				

2

(8)