Regi									
_	stration N	o:							
Total	Number	of Pages : (02					P۵	B.Tecl
	210	210	1 st Sen		ck Examinati		9	210	
BI	RANCH : A	AEIE. AER(O. AUTC		IED PHÝŠICS), BIÓTECH,		/IL. CSE.	ECE. EEE	EIE.
					NUFAC, MA				
			MINING	• •	E, PLASTIC, I	PT, TEXTIL	E.		
					e : 3 Hours Marks : 100				
					ODE : E748				
Ans	werQues	tion No. ²¹⁰ (Part-1) v	which is c	ompulsory, a	any EIGHT	from Par	t-ll and an	y TWO
		T h. (m Part-III.				
		I he f	igures ii	n the right	t-hand margi	n indicate	marks.		
					Part – I				
Q1	Short	Answer Ty	pe Quest	tions (Ans	wer All-10)				(2 x 10
		the principle d to this princ		I work. Give	e one example	. How is D ₂	Alemberts'	principle	
	oscilla	ator.			g and give an				
	amplit	ude 2 units a	and 3 unit	ts respectiv	and minimum ely to be const		r two wave	s having	
		in the grating	-		• •				
		guish betwee	•				.10	210	
	LASE	R depends o	on this ph	enomenon.		-		luction of	
	-				n having no cha	-	current.		
	, ,		0		point (1, -2, -1				
	,				on effect and F				
	work	tion of wave function is 3 ne stopping p	8.2eV. Ca	100A is inc Iculate the	ident on a me maximum K.E	tal surface ₂ . of the em	whose pho litted photo	toelectric electrons	
					Part – II				
Q2			-		ons- (Answei			,	(6 x 8)
	21 mass	'm' and force	e constan	nt 'k'210	a dimensional	2	.10	210	
	dampi	ing force pro	portional	to velocity.	f a damped			-	
	in sam	ne direction s	superimp	ose on eacl					
	point	What are Fresnel's half period zones? Explain the factors on which the intensity at a point due to Fresnel's half period zones depend? ²¹ A two-dimensional lattice has the following basis vectors a =3 i +2 j and b = i + j , where a ,							
	b are		rs and i ar		ving basis vect t vectors along	-			
	f) Descr	ibe the work							

			State and electrostatic		Gauss diverge	ence theorem. I	Explain its sign	210 lificance in		210
		h)	Write the in between cur	ntegral forn rrent and cu	irrent density.	ere's circuital law				
		i)	Show that $\vec{\nabla}$	$\dot{\gamma} A(r) = \hat{r} \frac{\partial A}{\partial r}$	$\frac{A}{r}$, where \hat{r} is	a unit vector along	the position vect	for \vec{r} .		
210		j) 2	Evaluate the	e expectatio	on value of x fo	r a one-dimension	al potential box o	f length L in		210
			the ground s	state, where	e one dimensio	nal potential box y	$\psi_n(x) = \sqrt{\frac{2}{L}Sin\frac{n\pi}{L}}$	$\frac{x}{x}$.		
		k)	State Heise constituent of	•	• •	ciple. Show that	an electron can	not be the		
		I)	Find the pro between 0.4	bability tha 0L and 0.6	t a particle in a	a one-dimensional und state, where o	-			
210		2	$\psi_n(x) = \sqrt{\frac{2}{L}}$	$Sin\frac{n\pi x}{L}$.	210	210	210	210		210
						Part – III				
	Q3	a)	The Lagran	gian L is gi	ven by L=1/2	wer Any Two out m (dx/dt) ² +m (dy/		ky². Using it	(8)	
		b)				nd its solution(s). steady-state solution	on for displaceme	nt when the	(8)	
210		2	damped har	monic oscil	lator is subject	ed to an external p	periodic force.	210		210
	Q4	a)	Discuss the maximum ar			ue to a single slit	. Find condition	of Principal	(8)	
		b)	Describe the of fringes in		n interferomete	r with a neat diagr	am and explain th	e formation	(8)	
210	Q5	a) b) ²		e working p	rinciple of He-	FCC lattice is recip Ne gas Laser. Wh	010	010	(8) (8)	210
	Q6	a)				lent Schrodinger e	equation and app	ly this for a	(12)	
			free particle		its momentum	and energy.				
		b)				echanical particle Asin2x. Normalize			(4)	
210				$\leq x \leq \pi/2$ is	s given by Ψ=A				(4)	210
210			region –π/2 the normaliz	$\leq x \leq \pi/2$ is	s given by Ψ=/ ant.	Asin2x. Normalize	the wave functior	and obtain	(4)	210
210		2	region –π/2 the normaliz	$\leq x \leq \pi/2$ is	s given by Ψ=/ ant.	Asin2x. Normalize	the wave functior	and obtain	(4)	210
		2	region –π/2 the normaliz	$\leq x \leq \pi/2$ is ation const	s given by Ψ=4 ant. 210	Asin2x. Normalize	the wave function	and obtain 210	(4)	
		2	region –π/2 the normaliz	$\leq x \leq \pi/2$ is ation const	s given by Ψ=4 ant. 210	Asin2x. Normalize	the wave function	and obtain 210	(4)	
210		2	region –π/2 the normaliz	$\leq x \leq \pi/2$ is ation const 210	s given by Ψ=4 ant. 210	Asin2x. Normalize 210 210	210 210	and obtain 210 210	(4)	210
		2	region –π/2 the normaliz	$\leq x \leq \pi/2$ is ation const	s given by Ψ=4 ant. 210	Asin2x. Normalize	the wave function	and obtain 210	(4)	
210		2	region –π/2 the normaliz	$\leq x \leq \pi/2$ is ation const 210	s given by Ψ=4 ant. 210	Asin2x. Normalize 210 210	210 210	and obtain 210 210	(4)	210
210		2	region –π/2 the normaliz	$\leq x \leq \pi/2$ is ation const 210	s given by Ψ=4 ant. 210	Asin2x. Normalize 210 210	210 210	and obtain 210 210	(4)	210

210 210 210 210 210 210 210 210 2