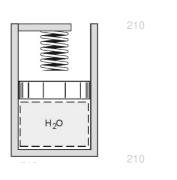

0	210	210	210	210	210	210	210	
	Registration No :							
т	otal Nu	umber of Pages : 03	}			15	B.Tech BE2103	
0	210	210	st Semester Ba		ר 2018 <u>-</u> 19	210	210	
0	EEE, I MAR	BRANCH : AEIE, AL EIE, ELECTRICAL, I INE, MECH, METTA	ERO, AUTO, BIG ENV, ETC, FASI METTAMIN, M Tim Max Q.C	HION, FAT, IEE INERAL, MININ e : 3 Hours Marks : 100 ODE : E904	, IT, ITE, MANU IG, MME, PE, P	IFAC, MANU LASTIC, TEX	TECH, (TILE	
	Answe	r Question No.1 (Pa		ompulsory, an om Part-III.	y EIGHT from I	Part-II and an	y TWO	
		The fig	ures in the righ		indicate marks			
				Part- I				
C	21	Short Answer Type	Questions (Ansy				(2 x 10)	
	a)	Write two reasons 'w	-	-	ssible'.		(= x 10)	
0	210 b)	Under what conditions is the work done is $\int_{1}^{2} P dV$?						
	c)	Explain the principle		$J_1 $				
	d)	Suppose there is a h necessarily violate th	eat engine that o	•	% thermal efficie	ncy. Does it		
	e)	All adiabatic reversil Justify.						
0	29 0	of a system always re	equire a heat trans	fer? Justify your	answer	. 210	210	
	g)	We speak of at times can conserve- the qu	ality of energy or o	quantity of energy	/			
	h)	A heat pump takes u space. Is this violation	n of the second la	w of thermodynar		armer indoor		
	i)	State the difference b		•				
0	j) 0	What are the differen	t methods of mea	surement of quali	ty ₂₁₀	210	210	
				Part- II				
	·	Focused-Short Ans A 400-L tank A, cont piston of such mass is opened and argon 30°C throughout. Wh	ains argon gas at that a pressure of flows into B and	250kPa, 30°C. C 150kPa will float eventually reach	Sylinder B, having t it, is initially emp	a frictionless oty. The valve	(6 x 8)	
0	210 b)	Athermal storage dev K using solarenergy ambient surrounding reaches290 K the pr the heat engine's effi the process?	Aheat engine re s at 290 K.The ocess stops. Find	ceivesQ _{́H} from the rock bed there I the energy the	e bed andrejects efore cools dow rockbed can give	s heat to the n, and as it e out. What is	210	
10	C)	An air conditioner co The house gains ene β_{CARNOT} . Find the ma provides sufficient co	ergy as \dot{Q} = 0.6(T_H ximum outside ter	- T_L) [kW] and the	ne refrigeration C	OP is $\beta = 0.6$	210	


- **d)** A BPUT student runs a heat pump with a motor of 2 kW. He/She should keep his/her class room at 30°C which loses energy at a rate of 0.5 kW per degree difference to the colder ambient. The heat pump has a coefficient of performance that is 50% of a Carnot heat pump. What is the minimum ambient temperature for which the heat pump is sufficient?
- e) Steam at 5Mpa and 500°C enters a nozzle steadily at a velocity of 80 m/sec and it leaves at 2 Mpa and 400°C. The inlet area of the nozzle is 38 cm² and heat is being lost at a rate of 8Kg/sec. Determine
 - i. Mass flow rate of the steam
 - ii. The exit velocity of the steam and
 - iii. The exit area of the nozzle
- f) Air flows steadily at the rate of 0.4 kg/sec through an air compressor entering at 6m/sec with a pressure of 1bar and specific volume of 0.85m³/kg, and leaving at 4.5m/sec. with a pressure of 6.9 bar and a specific volume of 0.16m³/kg. Internal energy of air leaving is 88 KJ/kg greater than that of air entering. Cooling water in a jacket surrounding the cylinder absorbs heat from the air at a rate of 59 W. calculate the power required to drive the compressor and the area of cross section of inlet and outlet
 - **g)** A reversible engine, as shown in Figure during a cycle of operations draws 5 MJ from the 400 K reservoir and does 840 kJ of work. Find the amount and direction of heat interaction with other reservoirs.

h) A container with water at 100 K has across-sectional area of 0.5 m², as shown in²¹⁰ Fig. Due to heat transfer, some of the liquid even drans and in the ur the liquid level drans 20 mm. The vaner leaving the container

evaporates, and in 1hour the liquid level drops30 mm. The vapor leaving the container passesthrough a valve and a heater and exits at 500 kPa,260 K. Calculate the volume rate of flowof gas exiting the heater.

 A cylinder/piston arrangement contains water at105°C, 85% quality? With a volume of 1 L. Thesystem² is heated, causing the piston to rise and encountera linear spring, as shown in Fig. Atthis point the volume is 1.5 L, the piston diameteris 150 mm, and the spring constant is 100 N/mm.The heating continues, so the piston compresses the spring. What is the cylindertemperature when the pressure reaches 200 kPa?

210

210		210	210	210	210	210	210	210			
		j)	Considering a Piston- items:	Cylinder device to	operate as an	C engine, define	the following				
			i. ii. iii.	TDC and BDC Connecting Rod Crank							
210		210	210 IV .	Crank Shaft	210	210	210	210			
		k) I)	What is heat engine? between I C engine ar What is the basic dif schematic diagram a compression refrigerat	nd an external com fference between and discuss the	bustion engine refrigeration ar	? Give examples ond air conditionin	of both g? Draw the				
				I	Part-III						
210	02	210	Long Answer [®] Type C	uestions (Answe	er Any Two out	of Four) ⁰	210	210 (4 C)			
210	Q3	210	A rigid tank A of v contains 3kg ofwater rigid tank B is 0.4 m 600kPa, 200°C. They to apiston/cylinder init closed valves. The p cylinder should be 800	at 120°C, and 3 with water at are connected tially empty with pressure in the				(16) 210			
			piston. Now thevalves are slo uniform state at 250°C the work and heat tran	C withthe valves on sfer in the process	open. Find the f s.	inal volume and	pressure,and	(10)			
210	Q4	210	A vessel of $6m^3$ capacity contains two gases A & B in proportion of 45% and 55% (16) 210 respectively at 30°C. if the gas constant R for the gases is 0.288 kJ/kg-K and 0.295 kJ/kg-K and total weight of mixture is 2 kg, calculate a) the partial pressure b) the total pressure c) the mean value of R for the mixture								
	Q5		Write down the detail	orinciple of therma	l power plant wi	th neat sketch		(16)			
210	Q6	210 a) b) c) d)	Write Short Notes : Combine mode of hea Throttling Calorimeter Clausius inequality Calibration of thermon		210	210	210	(16)			
210		210	210	210	210	210	210	210			
210		210	210	210	210	210	210	210			

210 210 210 210 210 210 210 210 210 210