	210	210	210	210	210	210			
F	Regi	stration No :							
Tota	al Nu	umber of Pages : 02	2				B.Tech		
	210	210	st Semester Bac	k Examinatio		210 PA	M1A001		
	010	BRANCH : AEIE , EEE, EIE, ELECTR METTA, MII r Question No.1 (Pa	, AERO, AUTO, I ICAL, ENV, ETC NERAL, MINING, Max ti Max Q.Co art-1) which is co	BIOMED, BIO ; FAT, IEE, IT , MME, PE, PI me : 3 Hours Marks : 100 DDE : <u>E</u> 684	TECH, CHEM, , MANUFAC, I LASTIC, PT, T	MANUTECH, MI EXTILE			
		The fig	ures in the right	hand margir	n indicate mar	ks.			
01		Short Anourar Tuna	Questions (Anow	Part-I			() x 4(
Q1	a) b) c) d)								
	e)	What do you mean equation? What is the				of a differential			
	f) g)	Define Cauchy's hom What is the rank of a	logeneous linear e	quation.					
	5) h) i) j)		ation and Legendr	e polynomial. les.	210	210			
~~				Part- II		(T)	(0		
Q2	2)	Focused-Short Ans			Any Eight out o	t i weive)	(6 x 8		
	a) 21,0	Find the rank of the n Show that the radius		· 210	210	210			
	b)	Show that the radius $x = a \cos^3 \theta y = a \sin^2 \theta y$ the origin to the tange	$^{3} heta$, is equal to the			pendicular from			
	c)	Show that the eight p $xy(x^2 - y^2) + x^2 + y$	oints of intersectio	n of the curve /mptotes lie on	a circle whose	center is at the			
	d)	origin. If $u = \sin^{-1}\left\{\frac{x+y}{\sqrt{x}+\sqrt{y}}\right\}$	show that $r \frac{\partial u}{\partial u}$ +	$v \frac{\partial u}{\partial u} = \frac{1}{2} \tan u$					
	e)					ding the second			
	f)	degree. A rectangular box wi cardboard. What is th				m 12 sq. feet of			
	g)	Solve the differential							
	h)	For what value of μ , t	x + 2	2v + 4z = u					
	210	Has a solution and so	210 x + 4	$y + 10 \underline{z}_{1\overline{0}} \mu^2$ by in each case	210 2 .	210			
	i)	Solve: $\frac{d^4y}{dx^4} - y = \cos x$	r cosh r						

210		210	210	210	210	210	210	210
		k) I)	State and prove Rodrigues' Solve: $y(x + y + 1)dx + x(x)$)			
210	Q3	210	Long Answer Type Quest Find all the asymptotes of the $x^3 - 2y^3 + xy(2x - y) + y(y)$ which lie on the straight line	he cubic polynom $x - y$) + 1 = 0 ar	ny Two out of Fo	p ur) the curve in thre	(16) ee point	210
	Q4		Find the basis of eigenvector	ors and diagonaliz $ \begin{bmatrix} 18 & 0 \\ 24 & -4 \\ 42 & -12 \end{bmatrix} $		natrix	(16)	
210	Q5		210 Solve $(D^2 - 9)y = x + e^{2x} + 50$ Solve $(D^2 + 5D + 6)y = e^{-2x}$	210 — sin 2 <i>x</i>	210	210	210 (16)	210
	Q6		The Legendre polynomials		ollowing orthogon	al property:	(16)	
			$\int_{-1}^{1} P_n(x) P_m(x) dx = 0, n \neq n$	m				
210		b)	$\int_{-1}^{1} P_n^2(x) dx = 0 \frac{2}{2n+1}$	210	210	210	210	210
210		210	210	210	210	210	210	210
210		210	210	210	210	210	210	210
210		210	210	210	210	210	210	210
210		210	210	210	210	210	210	210
210		210	210	210	210	210	210	210
010		210	210	210	210	210	010	010