	210	210	210	210	210		210	210
	Regi	istration No :						
٦	Total N	umber of Pages	: 02					.Tech
			4 st O D	-			15BS	51102
			1 st Semester B	ack Examina PHYSICS	ation 2018-19)		
	RĐÁ		RO, AUTO, ² BIOME					IE 210
		-	TC, FASHION, FA					•
			METTAMIN, MINE					 ,
		,	-	me : 3 Hours		,		
			Ма	x Marks : 10	0			
				CODE : E846				
	Answe	er Question No.1	(Part-1) which is		, any EIGHT	from Part-II	and any 1	ΓWO
	210			rom Part-III.	210		210	210
		Ine	figures in the rig	nt hand marg	gin indicate	marks.		
				Part- I				
(21	Short Answer T	ype Questions (An				(2	2 x 10)
	a)		armonic motion and		aracteristics.		·	,
	b)		of two coherent wav		atio 2:3. Find th	he ratio of ma	ximum	
	•		isities when they su		and choose at -	n of an interf	oronoo	
	2 C)	pattern.	ditions necessary for	production a	and observatio	n or an interf	FIGUCE	210
	d)		een the Fresnel and	Fraunhofer cla	ass of diffractio	n.		
	e)	The indices of re	fraction for ordinary	and extra-orc	dinary light for	mica are 1.58		
			ely. Find the thickn	ess of quarter	r wave plate	of mica for I	ight of	
	Ð	wavelength 5890						
	f) a)							
	g) _h)		offeet?			alically.	010	010
	210 i)		e Broglie wavelengt	h of a particle	e of mass 0.0	2 kg moving	with a	210
		speed of 400 m/s				0 0		
	j)	What is the phys	ical meaning of wav	e functionΨ?				
				Part- II				
(ຊ 2	Focused-Short A	nswer Type Questic		Any Eight out o	of Twelve)	(6 x 8)
	a)	What do you me	ean by normal mod				and Q_2	
	210	mode oscillations	210.	- 210	210		210	210
	b)		of superposition. d A_2 superpose coh					
			aximum and minimu					
	c)		ference in biprism. [
	d)	Discuss Fraunho	ofer diffraction in a	i single slit. S			ondary	
	- 1		es with increase in c					
	e) f)	· · · · · · · · · · · · · · · · · · ·	te? Differentiate zon r's law? Using this s			ransmitted ray	vs in a	
	f) 210		rpendicular to each				ys iir a 210	210
	g)		an by double refract		diagram desc	ribe the const	ruction	
		and working of a	Nicol prism?					
	h)		ean by divergence	and curl of a	a vector field?	? Find the va	alue of	
	i)		rl of a vector field. ement current? Us	ing modified 4	Ampere's circu	uital law deri	ve the	
	(י	Maxwell's 4 th eau	ation in differential f	form.				
	j)	Using Maxwell's	s equations, matl					
	210	electromagnetic	wave. ²¹⁰	210	210		210	210
	k)		e hypothesis matte	r wave. Deriv	ve time indep	endent Schro	odinger	
	I)	equation. What is Heisen	berg Uncertainty p	rinciple? Illust	trate the prine	cinle in nam	ma-rav	
	''	microscope.				sipio in gaini	naray	
		1						
	0.1.0		010		0.4.0			0.1.0

.

210 210 210 210 210 210 210 210										
Long Answer Type Questions (Answer Any Two out of Four)Q3a)Starting from differential equation discuss the resonance and quality factor of forced (fiscillator.(f)b)(i)Deduce the expression for diameter of dark ring in Newton's ring experiment and explain how the wavelength of monochromatic light can be measured by it.200201(ii)Newton's rings are formed using a lens of radius of curvature 100 cm. Calculate the diameter of 20" dark ring with wavelength 5500A.(f)Q4a)(i)What is a diffraction grating?Deduce the condition for principal maximum, secondary maxima and minima of a grating.(f)(ii)(ii)(ii)du the grating element of a plane diffraction grating of width 3.5 cm and 15000 rulings.210(iii)(ii)(iii)du the grating element of a plane diffraction grating of width 3.5 cm and 15000 rulings.210(iii)(ii)(iii)grating element of a plane diffraction grating of width 3.5 cm and 15000 rulings.210(iii)(iii)(iii)gratically polarized light produced? How it light can be converted to plane plantadiffic rotation.210(iii)(iii)(iii)grate Gauss' law of electrostatics.210210(iii)(iii)State Gauss' law of electrostatics.210210210(iii)State Green's theorem.210210210210(iii)State Green's theorem.210210210210(iii)State Green's theorem.210210210210210(iii)State G	210		210	210	210	210	210	210	210	
 a condary maxima and minima of a grating. a product the grating element of a plane diffraction grating of width 3.5 cm and 15000 rulings. b) (i) How is elliptically polarized? A color maxima and converted to plane 20 cm. This liquid path causes 53.5 °C optical rotation. Compute the value of specific rotation. a (ii) What is Poynting vector? Deduce Poynting theorem. (iii) State Gauss' law of electrostatics. b) (i) Derive the wave equation in free space for electric vector E and for magnetic field vector B:0 210 210 210 210 210 210 210 210 210 21	210	Q3	a) b)	 Starting from different oscillator. (i) Deduce the expresent explain how the w (ii) Newton's rings and starting the starting of the starting term of term of	tial equation disc ession for diameter avelength of more e formed using a	ver Any Two out cuss the resonan er of dark ring in nochromatic light a lens of radius c	ce and quality fa Newton's ring ex can be measure of curvature 100	xperiment and ed by it.		
(ii)State Gauss' law of electrostatics.(i)(i)Carlo weat and the wave equation in free space for electric vector E and for magnetic field vector B:(i)(ii)(iii) <th>210</th> <th>Q4</th> <th>b)</th> <th> secondary maxim (ii) Find out the grating 15000 rulings. (i) How is elliptically polarized? (ii) 40 gm of cane-s solution is filled in </th> <th>a and minima of ing element of a polarized light pr 210 ugar is dissolve a glass tube of</th> <th>a grating. plane diffraction roduced? How it I 210 d in water to m length 20 cm. T</th> <th>n grating of widt ight can be conv ²¹⁰ nake 100 cc sol his liquid path ca</th> <th>h 3.5 cm and rerted to plane $\frac{210}{210}$</th> <th></th> <th></th>	210	Q4	b)	 secondary maxim (ii) Find out the grating 15000 rulings. (i) How is elliptically polarized? (ii) 40 gm of cane-s solution is filled in 	a and minima of ing element of a polarized light pr 210 ugar is dissolve a glass tube of	a grating. plane diffraction roduced? How it I 210 d in water to m length 20 cm. T	n grating of widt ight can be conv ²¹⁰ nake 100 cc sol his liquid path ca	h 3.5 cm and rerted to plane $\frac{210}{210}$		
can they be explained?bUsing Schrodinger's equation find out the wave function and energy eigen values of a free particle in a infinite potential well of width 'a'.210	210	Q5	b)	 (ii) State Gauss' law (i) Derive the wave evector B¹⁰ 	of electrostatics. equation in free s	pace for electric	vector E and for	-		
210 210 210 210 210 210 210 210 210 210 2		Q6	b)	can they be explained Using Schrodinger's e	? equation find out	the wave functior			(16)	
210 210 210 210 210 210 210 210	210		210	210	210	210	210	210	210	
	210		210	210	210	210	210	210	210	
210 210 210 210 210 210 210 210	210		210	210	210	210	210	210	210	
	210		210	210	210	210	210	210	210	