Regis	tration No :
Total	lumber of Pages : 02 210 210 210 B.
	BS 1 st Semester Back Examination 2018-19 PHYSICS - I
Е	CH: AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, LECTRICAL, ENV, ETC, FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH
210	Max Marks: 70
	Q.CODE : E908
	Answer Question No.1 which is compulsory and any FIVE from the rest. The figures in the right hand margin indicate marks.
Q1	Answer the following questions : (2)
210 8	A particle executes SHM with amplitude 4 cm and frequency 5 Hz. Find the maximum value of velocity and acceleration.
	Define logarithmic decrement.
C	What are coherent sources? Write the methods of producing coherent sources.
C	Why are the fringes in Newton's ring experiment circular?
210	In a plane transmission grating the width of each slit is equal to half of the width of the opaque portion. Which order spectra will be absent?
f	What do you mean by angle of polarization? How is it related to refractive index of material?
g	·
ł	State Faraday's law of electromagnetic induction and express it mathematically.
210	What do you mean by normalization of wave function Ψ?
210	What is stopping potential in Photo electric effect? Is it dependent on intensity or frequency of radiation?
Q2 a	What do you mean by normal mode oscillation in a coupled oscillator? (Compare between Q_1 and Q_2 mode oscillation.
b	· · · · · · · · · · · · · · · · · · ·
210	(ii) Ten sinusoidal waves of equal amplitude superpose incoherently to produce a resultant wave of intensity 0.5 watt/m². What would be the resultant if these waves superpose coherently?
Q3 a	Find out the expression for diameter of dark ring in Newton's ring experiment and explain how the wavelength of a monochromatic light can be measured by it.
210 k	

						2.0		
210	Q4 a) b) 210 Q5 a) b)	Discuss the condition of Principal maximum and minima. b) Mention the similarities and differences between zone plate and convex lens. 210 Q5 a) With basic principle describe the construction and working of Nicol prism. b) (i) Define specific rotation and state its unit. (ii) The plane of polarization of a linearly polarized light is rotated by 4° when it passes through a 20 cm long tube containing a sugar solution. Find the						
210	Q6 a) 210 b) Q7 a) b)	specific rotation Mathematically show Evaluate curl of pos Particles of energy V ₀ . Discuss in detail A beam of electron	sition vector ' r'. E incident on a o about reflection ar	ature of electro	omagnetic wave. 210 al potential step on coefficient for E	of height $E > V_0$.	(5) (5) (5)	210
210	Q8:10 a) b) c) d)	potential of height transmitted. Write short answer Resonance Quarter Wave and F Poynting theorm Heisenberg's Uncertainty of the state	5 eV. Find the on any TWO:				(5 x 2)	210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210