		j) k) l)	method. Prove that the o	center of curvat	on $y'' + y = cosec$ ure at points of a $+ (x + \log x - x)$	cycloid lie on an	•	ter		
210		210	` `	,			210	210		210
	Q3	210	Long Answer Find the point	Type Question of the curve y t at the point for	Part-III is (Answer Any e^x) at which the ax	Two out of Four ne curvature is m	') naximum and sh	ow ((16)	210
210	Q4	210		s have equal sp $A = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$	pectra verify this 1 $0_{10} -3 5$ $0_{10} 1 0$ $0_{15} 9 -10$	for A and $B = P^-$ $ \begin{bmatrix} 2 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 5 \end{bmatrix} $		210	(16)	210
	Q5	a)			on by using me	thod of undeter	mined coefficien	t :	(8)	
		b)	$(D^2 + 16)y = 3$ Solve $(D^2 + 5D)$		nh 2 <i>x</i>				(8)	
210	Q6	210	State and prove	e Rodrigues for	mula and hence	derive $P_4(x)$.	210	210	(16)	210
210		210	210	0 ;	210	210	210	210	2	210
210		210	210	0 :	210	210	210	210	,	210
210		210	210	0 :	210	210	210	210	ź	210
210		210	210	0 :	210	210	210	210	2	210