Registr	ation No :								
Total N	umber of Pag	es : 02	210	2	210		210	210	B.Tecl
		1 st Se	emester E			ion 2018	3-19		D3110
BRANC	H : AEIE, AEI	RO, AU1		CHEMIST ED, BIOT		СНЕМ,	CIVIL, C	CSE, ECE, I	EEE, EIE
	ECTRICAL, EI E, MECH, ME								
210	210	· • • • • • • • • • • • • • • • • • • •	Ti	ime : 3 H	ours	, iii	210	210	ILXIILI
			IVI	ax Marks .CODE :					
	Answer Ques		.1 which i	•	_				st.
		•			margi	in maic	ate man	NS.	
Q1 a)	Answer the fe What informat				2?				(2 x 10)
₂₁₀ b)	Determine is speed of light'		roglie wave	elength of	an ele	ctron tra	velling a	t 2% of the	
c)	What are th		indices,	if the pla	ane in	tersects	the cry	stal lattice	
d)		etween t	he triple p	oint and c	ritical p	ooint with	one ex	ample from	
e)							ectively.	Predict the	
,, f)	structure of Co						100 se	c to 50 sec	
210	when the initiate the order of the	al concer	ntration is o						
g)		nical read	ction for pro			ooguro o	5 20Nm ⁻²	to 1Nm ⁻² at	
h)	300K. What is	the free	energy ass	sociated w	ith this	process'	?	to min at	
i) j)	How will you r What percent								
Q2 ²¹⁰ a)	Discuss the sa	alient feat	tures of wa	ve function	n.		210	210	(5)
b)	Draw the mol behavior and					O_2^-, O_2^+ .	Compar	e magnetic	(5)
Q3 a)	The emf of the		•	•	•	•			(5)
	27°C and 7°C of this reaction	•	vely. Calcu	ılate the c	hange	in free e	nergy ar	nd enthalpy	
₂₁₀ b)	A face-centre	d cubic c	2101		- 1 0	radius	of_180pm	n. Calculate	(5)
	the spacing of	(i) (200)	and (II) (11	1) planes	•				
Q4 a)	The catalysed	-							(5)
	This reaction energy of this		•						
	minutes.					о оо ,			(-)
210 b)	Prove that [δ\	//δT) _P = ((δS/δP) _T	2	210		210	210	(5)

210	Q5 a) 210 b)	What is the emf of the Zn(s) I Zn ²⁺ (0.2M) II The standard emf of Derive the relations pressure.	Ag⁺ (0.002M)IAo the cell is 1.54V	g(s) 210	210	210 constant	(5) (5)	210
210	Q6 210	Combustion of dibora $3 O_2 \rightarrow B_2O_3$ (g) + B_2H_6 . Combustion o atom. Standard heat ΔH_f of diborane. Describe the law of the standard heat ΔH_f of diborane.	(10)	210				
	Q7	Define phase rule. W					(10)	
210	Q8 ₂₁₀ a)	Write short answer Phase diagram of Bi-		210	210	210	(5 x 2)	210
	c) b)	Determination of Latt Salient features of he	eterogeneous ca	talysis with two ex				
	d)	Functioning of lead s	torage cell with o	cell reactions.				
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
£1U	210	210	210	210	210	210		∠ I U