Registration No.:					7	
Total number of printe	d pages – 4					
			-		B. Tech	
			E	BSCM 2101/BS 1101 (O/N)		

First Semester Examination - 2010

MATHEMATICS - I (Old and New Course)

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions precisely :

2×10

- (a) Find the solution of the differential equation y'-2xy=2x.
- (b) Find the solution of the initial value problem $y' e^{x}y = 0$ with y(0) = e.
- (c) Find the integrating factor of the differential equation (x + xy) dx + (y + xy) d(y) = 0.
- (d) Write the particular solution of the differential equation y'' + y' = 2x in general form using method of undetermined coefficient.
- (e) If $y_1(x)$ and $y_2(x)$ are solutions of the differential equation y'' + p(x)y' + q(x)y = 0, then what is the relation among $y_1(x)$, $y_2(x)$ and p(x).
- (f) What is the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$?

P.T.O.

- (g) What necessary condition should p(x) satisfy in order to take $y(x) = \sum_{n=0}^{\infty} a_n x^{n+r} \text{ as the series solution of the differential equation}$ y'' + p(x)y' + y = 0
- 6.
- (h) If $J_n(x)$ is the Bessel function of order n, then what is the relation between $J_n(x)$ and $J_{-n}(x)$?
- (i) If $P_n(x)$ is the Legendre polynomial of degree n, then what is the relation between $P_n(-x)$ and $P_n(x)$?
- (j) What is the relation between diagonal matrix of order n and identity matrix of order n?
- 2. Solve the following problems:
 - (a) Find the radius of curvature of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ at the point (0,a).
 - 5
 - (b) Find the asymptote to the curve $x^3 + y^3 + 3axy = 0$.
- 5
- 3. Answer the following questions according to the instruction:
 - (a) Solve the Bernoulli's equation $x^3y' + 4x^2 \tan(y) = e^x \sec(y)$. 5
 - (b) Solve the non-linear differential equation (3x-2y+2) dx = (2x-4y+5) dy.
- 4. Solve the following initial value problems :
 - (a) y" + y = sin(x) with y(0) = 0 and y'(0) = 2 using method of undetermined coefficient.5
 - (b) $y'' + 2y' + y = xe^x$ with y(0) = 0 and y'(0) = 0 using method of variation of parameter.
- 5. Answer the following questions according to the instruction :
 - (a) Find the general solution of the differential equation y" + y = sin(x) using y(x) = sin(x) as a solution of the homogeneous differential equation by the method of reduction order.

BSCM 2101/BS 1101 (O/N)

(2)

Contd.

- (b) Solve Cauchy-Euler equation $x^2y'' xy' + y = \ln(x)$.
- 6. Answer according to the instruction:

(a) Show that
$$J_{\frac{1}{2}}(x) = \left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \sin(x)$$
 5

- (b) Show that = $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$ for m \neq n.
- 7. Answer according to the instruction:
 - (a) State the conditions under which a system of equations AX = b has unique solution, no solution and infinitely many solution. Find a solution of the system of equations in integer form

$$x + y + z = 3$$

 $2x + 3y + z = 4$
 $2x + 2y + 2z = k$

(b) What is the relation between the algebraic multiplicity and the geometric multiplicity of an eigenvalue of any square matrix? Find the eigenvalue and the corresponding eigenvectors of the matrix l_{3×3}.

Or

(a) Find the Laplace transform of the function

$$f(t) = \begin{cases} 0, & t < 2 \\ 2t, & 2 < t < 4 \\ 0, & \text{otherwise} \end{cases}$$

using unit step function.

(b) If $f(t) * g(t) = \int_{0}^{t} f(t-x)g(x)dx$, then show that f(t) * g(t) = g(t) * f(t). 5

5

- 8. Answer the following questions according to the instruction:
 - (a) Find the name of the conic section which is represented by the quadratic form $9x^2 + y^2 6xy = 40$, and the corresponding transform which transforms the quadratic form to that conic section.
 - (b) Find the orthogonal matrix P such that PAP^T is a diagonal matrix where the matrix A is5

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Or

- (a) Solve the integral equation $y(t) = e^{t} + \int_{0}^{t} y(x)e^{t-x} dx$ using Laplace transform.
- (b) Solve the initial value problem y''+y=2 with y(0)=0 and y'(0)=2 using Laplace transform.