0r

- (b) Let F be a subspace of X and $x \in X$. Then $y \in F$ is a best approximation from F to x if and only if $x-y \perp F$ and in that case dist $(x,F) = \langle x,x-y \rangle^{1/2}$.
- 6. (a) Let $A \in BL(H)$ be self-adjoint. Then A or -A is a positive operator if and only if

$$\left|\left\langle A(x),y\right\rangle\right|^2\leq\left\langle A(x),x\right\rangle\left\langle A(y),y\right\rangle$$

for all $x, y \in H$.

Or

(b) Let H_1 and H_2 be Hilbert spaces and $A: H_1 \to H_2$ be linear. A is continuous iff the set $g(A) = \{(x, A(x)) : x \in H_1\}$ is closed in the Hilbert space $H_1 \times H_2$ with the inner product

$$\langle (x_1, x_2), (y_1, y_2) \rangle = \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle.$$

2018

Time: 3 hours

Full Marks: 80

Answer from both the Sections as directed

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(FUNCTIONAL ANALYSIS-II)

SECTION - A

- 1. Answer any four of the following:
 - (a) Let X be a separable normed space. Then prove that every bounded sequence in X' has a weak' convergent subsequence.
 - (b) Let X be a reflexive normed space. Then show that every closed subspace of X is reflexive.

 4×4

Or

(c) Let $\{u_1, u_2, \dots\}$ be a countable orthonormal set in an inner product space x and $x \in X$ then prove that

$$\sum \left|\left\langle x,u_{n}\right\rangle \right|^{2}\leq \left\|x\right\|^{2},$$

where equality holds iff

$$x = \sum_{n} \langle x, u_n \rangle u_n.$$

- (d) Let X be an inner product space. If $E \subset X$ is convex, then their exists at most one best approximation from E to any $x \in X$. Prove it.
- (e) Let H be a Hilbert space and $A \in BL(H)$ then show that

$$||A^*|| = ||A|| \text{ and } ||A^*A|| = ||A^2|| = ||AA^*||.$$

(f) Let (x_n) be a sequence in a Hilbert space H. Then prove that $x_n \to x$ iff $x_n \stackrel{w}{\to} x$.

- (a) Let X be a reflexive normed space. Then show that X' is separable if X is separable.
- (b) Define weak convergent.
- (c) If X is a Hilbert space and

$$\sum_{n} |k|^2 < \infty,$$

then show that

$$\sum_{n} k_n u_n$$

converges in X, where X is an inner product space and $\{u_1, u_2, \dots\}$ is a countable orthonormal set in X.

- (d) Let X be a inner product space, every finite dimensional subspace of x is closed in X.
- (e) Let {x_n} be a sequence in a Hilbert space H. If {x_n} is bounded, then prove that it has a weak convergent subsequences.

- (f) State Riesz representation theorem.
- (g) Let H be a Hilbert space and $A \in BL(H)$. Show that the closure of R(A) equals $Z(A^*)^{\perp}$.
- (h) Let $x \in X$. Then prove that $\langle x, y \rangle = 0$ for all $y \in X$ if x = 0

SECTION - B

Answer all questions:

 16×4

3. (a) Let $\{z_n\}$ be a sequence of non-decreasing functions on [a, b] such that $\alpha \le z_n(t) \le \beta$ for some constants α , β all $n = 1, 2, \cdots$ and $t \in [a, b]$. Then there is a non-decreasing function z on [a, b] such that z is right continuous on (a, b) and for some subsequence $[z_{n_j}]$ of $\{z_n\}$, we have $z_{n_j}(a) \to z(a), z_{n_j}(b) \to z(b)$ and $z_{n_j}(t) \to z(t)$ for every $t \in (a, b)$ at which z is continuous.

Or

(b) Let X and Y be normed space and F: X→Y be a linear map. Consider the following conditions:

- (i) whenever $x_n \to x$ in X, we have $F(x_n) \to F(x)$ in Y
- (ii) whenever $x_n \xrightarrow{w} x$ in X, we have $F(x_n) \xrightarrow{w} F(x)$ in Y
- (iii) whenever $x_n \to x$ in X, we have $F(x_n) \xrightarrow{w} F(x)$ in Y
- (iv) whenever $x_n \xrightarrow{w} x$ in X, we have $F(x_n) \to F(x)$ in Y Show that the conditions (i), (ii) and (iii) are equivalent. Condition (iv) implies condition (ii), but not converse.
- 4. (a) State and prove that the Coram-Schmidt orthonormalization theorem.

Or

- (b) Let H be a nonzero Hilbert space over K. Then the following conditions are equivalent:
 - (i) H has a countable orthonormal basis.
 - (ii) H is linearly isometric to K^n for some n.
 - (iii) H is separable.
- 5. (a) Let E be a non-empty closed convex subset of a Hilbert space H. Then for each x ∈ H, there exists a unique best approximation from E to x.