Or

(c) Prove that the linear transformation T on V is unitary off it takes an orthonormal basis of V into an orthonormal basis of V.

(d) Prove that the Hermitian linear transformation T is non-negative if and only if all of its characteristics roots are 8 non-negative.

2018

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(ALGEBRA-II)

SECTION-A

1. Answer all questions:

 2×8

- (a) Define annihilator of a subspace.
- (b) Define solvable of a group.
- (c) Define idempotent of a linear transformation.
- (d) Define eigenvalues of T.
- (e) Define invariant under $T \in A(V)$.

- (f) Define Jordan form of a matrix.
- (g) Define Jacobson Lemma.
- (h) State Cramer's Rule.

Or

2. Answer all questions:

 4×4

- (a) Show that the fixed field of G is a subfield of K.
- (b) For the given matrix

$$A = \begin{pmatrix} 0 & 0 & 6 \\ 0 & 1 & 1 \\ 6 & 3 & 2 \end{pmatrix} \in F_3$$

find $A^2 - 11A + 3$.

- (c) Show that if $T \in A(V)$ is nilpotent, then $\alpha_0 + \alpha_1 T + \dots + \alpha_n T^n$, where the $\alpha_1 \in F$, is invertable if $\alpha_0 \neq 0$
- (d) Show that if N is normal and AN = NA, then $AN^* = N^*A$.

SECTION-B

Answer all questions:

- 3. (a) If V is finite demensional and W is a subspace of V, then show that \hat{W} is isomorphic to $\hat{V}/A(W)$ and dim $A(W) = \dim V \dim W$. 8
 - (b) Let V be a finite dimensional inner product space then show that V has an orthonormal set as a basis.

Or

- (c) Prove that if $P(x) \in F[x]$ is solvable by radicals over F, then the Galo's group over F of p(x) is also solvable group.
- (d) If K is a finite extension of F, then G(K, F) is a finite group and its order, O(G(K, F)) satisfies O(G(K, F)) < [K:F].
- 4. (a) Show that if V is finite dimensional over F, then $T \in A(V)$ is invertiable iff the constant term of the minimal polynomial for T is not O.

MA/M.Sc.-Math-IIS (203)

(Continued)

MA/M.Sc.-Math-HS (203)

(Turn Over)

8

8

8

8

(b) If $T \in A(V)$ and if p(x) is the minimal polynomial for T over F, suppose that p(x) has all its roots in F. Prove that every root of p(x) is a characteristic root of T.

Or

- (c) If V is an orbitary vector space over F and if
 T∈ A(V) is right invertiable with unique
 right inverse, then prove that T is invertiable. 8
- (d) Prove that if V is n-dimensional over F and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis v_1, \ldots, v_n and the matrix $m_2(T)$ in the basis w_1, \ldots, w_n of V over F, then there is an element $C \in F_n$ such that

5. (a) If $T \in A(V)$ has all its characteristics roots in F, then show that there is a basis of V in which the matrix of T is Triangular.

 $m_{2}(T) = Cm_{1}(T)C^{-1}$.

(b) Prove that there exists a subspace W of V, invariant under T such that $V = V_1 \oplus W$.

Or

- (c) Prove that the elements S and T in $A_F(V)$ are similar in $A_F(V)$ iff they have the same elementary disvisors.
- (d) Prove that two nilpotent linear transformation are similar if and only if they have the same invariants.
- 6. (a) If F is a field of characteristics O, and if $T \in A_r(V)$ is such that $t_r T' = O$ for all i > 1 then T is nilpotent.
 - (b) If $A, B \in F_n$ then show that

 $\det(AB) = (\det A) (\det B).$ 8

8

8

8