(b) Show that a discrete module consists either of zero alone, of the integral multiples η_w of a single complex number w = 0, or of all linear combinations $n_1 w_1 + n_2 w_2$ with integral cofficients of two numbers w_1, w_2 with non-real ratio w_2/w_1 ?

Or

- (c) Prove that every point τ in the upper half plane in equivalent under the congruence subgroup mod 2 to exactly one point in ΩUΩ'?
- (d) Prove that

$$\varphi(2z) = \frac{1}{4} \left(\frac{\varphi''(z)}{\varphi'(z)} \right)^2 - 2\varphi(z).$$

2018

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(ADVANCED COMPLEX ANALYSIS)

SECTION - A

1. Answer all questions:

 2×8

- (a) State Rouche's theorem.
- (b) Find an expressions for the residue of f(z) at a simple pole z = a.
- (c) Define Weistrass's theorem.
- (d) Define Gamma function.
- (e) Define Riemann zeta function.

- (f) Write Jensons's formula.
- (g) What do you mean period module?
- (h) Define elliptic modular function?

0r

Answer all questions :

 4×4

- (a) Find the residue of $\frac{z^2}{z^2 + a^2}$ at z = ai.
- (b) Explain Taylor series to an analytic function.
- (c) Explain Hardmard's theorem.
- (d) Show that an elliptic function without poles is a constant.

SECTION - B

3. (a) Let f(z) be analytic except for isolated singularities a_j in a region Ω then proof that

$$\frac{1}{2\pi i} \int_{r} f(z) dz = \sum_{j} n(r, a_{j}) \operatorname{Res}_{z} = a_{j} f(z).$$
 8

(b) Evaluate the integral by residue method.

$$\int_{0}^{\infty} \frac{\cos x}{x^2 + a^2} dx, \ a \text{ is real.}$$

Or

(c) Find the residues at the pole of the function

$$f(z) \frac{z^4}{(c^2 + z^2)^4}$$

(d) Evaluate the integral by residue method

$$\int_{0}^{\infty} \frac{\log x}{1+x^2} dx$$

4. (a) If the functions f_n(z) are analytic and ≠ 0 in a region Ω and if f_n(z) converges to f(z), uniformly on every compact subset of Ω, then show that f(z) is either identically zero or never equal to zero in Ω.

MA/M.Sc. - Math-IIS(204)

(Continued)

(b) Express

$$\sum_{n=0}^{\infty} \frac{1}{z^3 - n^3}$$

in closed form.

Or

(c) Proof that

$$\sum_{n=1}^{\infty} \frac{nz^n}{1-z^n} = \sum_{n=1}^{\infty} \frac{z^n}{(1-z^n)^2}$$
For $|z| < 1$.

8

(Continued)

- (d) Show that the infinite product $\prod_{1}^{\infty} (1+a_n)$ with $1+a_n \neq 0$ converges simultaneously with the series $\sum_{1}^{\infty} \log(1+a_n)$ whose terms represent the values of the principal branch of the logarithm?
- 5. (a) Prove that the genus and the order of an entire functions satisfy the double inequality $h \le \lambda \le h + 1$?

(b) Show that the function

$$\xi(s) = \frac{1}{2}s(1-s)\pi - s/2 \Gamma(s/2)\xi(s)$$

in entire and satisfies $\xi(s) = \xi(1-s)$?

Or

- (c) Show that an entire function of fractional order assumes every finite value infinitely many times.
- (d) Prove that for $\sigma > 1$

$$\xi(s) = -\frac{\Gamma(1-s)}{2\pi i} \int_{c} \frac{(-z)^{s-1}}{e^{z}-1} dz$$

where $(-z)^{-1}$ is defined on the complement of the positive real axis as

$$e^{(s-1)}\log(-z)$$
 with $-\pi < \text{Im } \log(-z) < \pi$ 8

6. (a) Prove that the zeros $a_1,, a_n$ and poles $b_1, ..., b_n$ of an elliptic function satisfy

$$a_1 + \dots a_n \equiv b_1 + \dots + b_n \pmod{M}$$
 8

8

8