Total Pages-7 MA/M.Sc.-Math-IIS (CC 202)

2018

Time: 3 hours

Full Marks: 80

Answer from both the section as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

Symbols used have their usual meaning

(ADVANCED CALCULUS)

SECTION - A

- 1. Answer all questions from the following: 2×8
 - (a) Define directional derivative of a real valued function at a point.
 - (b) Define Taylor polynomial of degree n at a point x_0 .
 - (c) Define affine transformation.

- (d) What is an implicit function?
- (e) Define differentiability of a transformation.
- (f) State stokes theorem.
- (g) Define exactness of a 1-form w.
- (h) What do you mean by functionally dependent of a set of functions?

Or

- 2. Answer any four of the following: 4×4
 - (a) If $f(x, y) = x^2 + 3xy$, find directional derivative of f at (2, 0) in the direction

$$\beta = \left(\frac{1}{2}, -\frac{1}{\sqrt{2}}\right)$$

(b) Show that, if $u = \phi(x, y)$, $v = \psi(x, y)$, $x = f(r, \theta)$, $y = g(r, \theta)$,

$$\frac{\partial(u,v)}{\partial(x,y)}\frac{\partial(x,y)}{\partial(r,\theta)} = \frac{\partial(u,v)}{\partial(r,\theta)}.$$

(c) Let $f \in c'$ is an open set s suppose f has a

- local maximum at a point $p_0 \in S$. Then show that $Df(p_0) = 0$.
- (d) If γ_1 , and γ_2 are smoothly equivalent curves, then show that $L(\gamma_1) = L(\gamma_2)$.
- (e) Find the point at which the solution of $x^2 = yu = 0$ and xy + uv = 0, for u and v can be obtained.
- (f) If u = f(x, y) and v = g(x, y), then show that

$$dudv = \frac{\partial(u,v)}{\partial(x,y)}dxdy$$

SECTION - B

Answer all questions:

 16×4

- 3. (a) If $f \in c'$ in an open set s, then show that all its directional derivatives exist at any point $p \in s$ and $D_{\beta} f(p) = \beta . Df(p)$.
 - (b) If $f \in c'$ in an open convex set S in n-space. then show that for any points p_1 and p_2 in S,

their is a point p^* lying on the segment joining them such that

$$f(p_2) - f(p_1) = Df(p^*) \cdot (p_2 - p_1)$$

(c) Find the polar form of the Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

(d) Let $f \in c^{n+1}$ on an interval I about x = c, and let $P_c(x)$ be the Taylor polynomial of degree n at c. Then show that $f(x) = P_c(x) + R_n(x)$ for any $x \in I$, where the remainder R_n is given by

$$R_n(x) = \frac{1}{n!} \int_{c}^{x} f^{(n+1)}(t)(t-c)^n dt$$

4. (a) Let T be a transformation of class c' on an open set D in n-space, and let E be a compact set in D. Then show that there are numbers

(Continued)

M and $\delta > 0$ such that $|T(p) - T(q)| \le M|p-q|$ for all p, q in E with $|p-q| < \delta$.

(b) Let T be a transformation from R^n into R^m which is of class c' in an open set D and suppose that J(p) = 0 for each $p \in D$. Then show that T is locally are-to-one in D.

Or

(c) Show that for any $p \in s$ and $u \in \mathbb{R}^3$

$$dg \mid_{p} (u) = Dg(p).u$$

- (d) Let T be of class c' on an open set D in n-space taking values in n-space. Suppose that $J(p) \neq 0$ for all $p \in D$. Then show that T(D) is an open set.
- 5. (a) Let F and G be of class c' in an open set $D \subset R^5$. Let $p_0 = (x_0, y_0, z_0, u_0, v_0)$ be a point of D at which both of the equations F(x, y, z, u, v) = 0, G(x, y, z, u, v) = 0 are satisfied.

Suppose that $\frac{\partial(F,G)}{\partial(u,v)} \neq 0$ at p_0 . Then show

that there are two function ϕ and ψ of class c in a neighborhood N of (x_0, y_0, z_0) such that $u = \phi(x, y, z)$, $v = \psi(x, y, z)$ is a solution of the given equations on N giving u_0 and v_0 at (x_0, y_0, z_0) .

(b) If D^* is a parallelogram bounded by the lines $y = \frac{1}{2}x$, $y = \frac{1}{2}x + 2$, y = 3x, y = 3x - 4, make an appropriate sobstitution so as to evaluate $\iint_{D^*} xydxdy$.

Or

- (c) Find the length of the curve $y^2 = 4ax$ cut off by its latus rectum.
- (d) Let T be a transformation from R^3 in to R^3 described by u = f(x, y, z), v = g(x, y, z), w = h(x, y, z) which is of class c' in an open set D, and suppose that at each point $p \in D$ the differential dT has rank 2. Then show that T maps D onto a surcace in UVW space.

- (a) State and Prove Greens theorem.
- (b) If α is a k form and β any differentiate form, then show that

$$d(\alpha\beta) = (d\alpha)\beta + (-1)^k \alpha d(\beta).$$

Or

(c) Let Σ be a smooth surface of class c' whose domain D is a standard region or a finite union of standard regions in UV plane. Let

$$w = Adx + Bdy + Cdz$$

where A, B and C are of class c' on i. Then show that

$$\int_{\partial Z} A dx + B dy + C dz = \iint_{\Sigma} \left\{ \left(\frac{\partial c}{\partial y} - \frac{\partial A}{\partial z} \right) dy dz + \left(\frac{\partial A}{\partial z} - \frac{\partial C}{\partial x} \right) dz dx + \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) dx dy \right\}.$$

(d) If $w = xydx - y^2dy$ and γ is given by a square with two apposite vertices (0, 0) and (1, 1) find $\int_{\gamma} w$.