(d) Let f be an integrable function on [a, b] and suppose that

$$F(x) = F(a) + \int_a^x f(t)dt.$$

Then show that F'(x) = f(x) a.e in [a, b].

- 6. (a) State and prove Minkowski inequality.
 - (b) Show that a normal linear space X is complete if and only if every absolutely summable sequence is summable.

Or

(c) State and prove Riesz representation theorem.

2018

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

Symbols used have their usual meaning

(ABSTRACT MEASURE)

SECTION - A

1. Answer all of the following:

2×8

- (a) Define outer measure of a set.
- (b) What is almost everywhere property?
- (c) Define a simple function.
- (d) State Fatou's lemma.
- (e) Define a function of bounded variation.

- (f) Define a convex function.
- (g) Define bounded linear functional on a normed linear space.
- (h) Define L^p space.

Or

- 2. Answer any four of the following:
 - (a) Let 1 ≤ p < ∞. Then show that for a, b, t non-negative

$$(a+tb)^p \ge a^p + p^t b a^{p-1}$$

(b) Show that the function f(x) defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

is not a function of bounded variation.

- (c) Show that
 - (i) $\chi_{A \cap B} = \chi_A \cdot \chi_B$
 - (ii) $\chi_{\bar{A}} = 1 \chi_A$

- (d) Show that union of two measurable set is measurable.
- (e) Show that function defined by

$$f(x) = \begin{cases} 0, & x \text{ irrational} \\ 1, & x \text{ rational} \end{cases}$$

is not integrable in the sense of Riemann.

(f) If f is a measurable function and f = g a.e, then show that g is also measurable.

Answer all questions:

16×4

- 3. (a) (i) If m * E = 0, then show that E is measurable.
 - (ii) Show that m* is translation invariant.
 - (b) Let c be a constant and f and g be two measurable real valued functions defined on the some domain. Then show that
 - (i) cf is measurable
 - (ii) fg is measurable.

Or

- (c) Let E be a measurable set of finite measure and $\langle f_n \rangle$ a sequence of measurable functions defined on E. Let f be a real valued function such that for each $x \in E$, $f_n(x) \to f(x)$. Then show that for every $\in > 0$ and $\delta > 0$, there is a measurable set $A \subset E$ with $mA < \delta$ and integer N such that for all $x \notin A$ and $n \ge N$, $|f_n(x) f(x)| < 0$.
- (d) Show that the interval (a, ∞) is measurable.
- 4. (a) State and prove bounded convergence theorem.
 - (b) Define convergence is measure of a sequence of measurable function. Let $\langle f_n \rangle$ be a sequence of measurable functions that converges in measure to f. Then show that there is a sub-sequence $\langle f_{n_k} \rangle$ that converges to f a.e.

Or

(c) State and prove Lebesgue convergence theorem. (d) Let φ and ψ be simple functions which vanish outside a set of finite measure. Then show that for any two scalars a and b.

$$\int a\phi + b\psi = a \int \phi + b \int \psi$$

Further, if $\phi \ge \psi$ a.e, then $\int \phi \ge \int \psi$.

- 5. (a) Let f(t) be integrable on [a, b] and $\int_{a}^{x} f(t) dt = 0 \text{ for all } x \in [a, b], \text{ then show that } f(t) = 0 \text{ a.e. in } [a, b].$
 - (b) Define absolutely continuous function and show that if f is absolutely continuous on [a, b], then it is of bounded variation on [a, b].

Or

(c) Show that a function f is of bounded variation on [a, b] if and only if f is the difference of two monotone real-valued functions on [a, b].