(6)

(d) Letf be an integrable function on [a, 5] and
suppose that

F(x) = F(a)+ j: f(0)dr.
Then show that F'(x) = f(x) a.¢in [a, b].
6. (a) Stéte and prove Minkowski inequality.

(b) Show that a normal linear sb'ace Xis
complete if and only if every absolutely
‘summable sequence is summable.

Or

(¢) Stateand prove Riesz mmﬁm theorem.
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SECTION —A
1. Answer all of the following : 2x8

(a) Define outer measure of a set.

(b) What is almost everywhere property ?
(c) Define a simple function.

(d) StateFatou's lemma.

(¢) Define a function of bounded variation.

{ Tvon Gver )



(2)

(/) Define a convex function.

(g) Define bounded linear functional on a
normed linear space.

() Define f 1f space.
Or

2. Answer any four of the following :

(a) Let 1 <p <. Then show that for a, b, ¢
non-negative

(a+1b)? 2 aP + p’ba?!
(b) Show that the function f(x) defined by
1

~ |xsin—, x#0
f(x)= x
0 ,; x=0
is not a funciion of bounded variation.
(¢) Show that
() Xung=%X4%p
(i) Xz =1-%,
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(3)

(d) Show that union of two measurable set is
measurable.

(e) Show that function defined by
0, x irrational

f(x)={L e

is not integrable in the sense of Riemann.

(/) If f is a measurable function and /=g a.c,
then show that g is also measurable.

SECTION —-B
Answer all questions : 16x4

3. (@) () If m*E=0, then show that E is

measurable.
(ii) Show that m* is translation invariant.

(b) Letc beaconstant and f and g be two
measurable real valued functions defined on
- the some domain. Then show that

(/) cf is measurable

(i) fgis measurable.
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(4) (5)

Or , (d) Let ¢ and y be simple functions which

vanish outside a set of finite measure. Then
(c) Let E be a measurable set of finite measure show that for any two scalars g and b.
and (f,) a sequence of measurable functions

defined on E. Let f be areal valued function [ab+bw=a[o+bfy
such that for each x€E, f,(x) = f(x). Then .
show that for every €> 0 and 8 > 0, there is Further, if 2 y a.c, then I¢ZI\¢I.
a measurable set ACE with m4 < and .
integer N such that for all xg¢4 and n2N, 5. (a) Let f(f) be integrable on [a, 5] and
|£,(x) —fx)| <O. |” 7@ dt=0 for alixe[a, 5], then show
(d) Show that the interval (a, ) is measurable. that f(1)=0 a.e.in[a, b].
4. (a) State and prove bounded convergence (b) Define absolutely continuous function and
theorem. show that if f is absolutely continuous on
(b) Define convergence is measure of a [a, b], then it is of bounded variation on
sequence of measurable function. Let (/) [a, b].
be a sequence of measurable functions that
converges in measure to f. Then show that Or
there is a sub-sequence {f,, ) that converges
to f ae. nk (c) Show that a function fis of bounded variation
on [a, b] if and only if f is the difference of
O two monotone real-valued fucntions on
(c) State and prove Lebesgue convergence {a, b].
theorem.
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