(a) State Planck's law and derive equation for the B-E condensation.

Or

(b) Explain in detail Ising model in Bose gas.

2018

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(STATISTICAL MECHANICS)

SECTION - A

- 1. Answer any four of the following:
 - (a) State and explain Equipartition theorem.
 - (b) Explain density fluctuations in grand canonical ensemble.
 - (c) Explain postulates of quantum statistical mechanics.

4 × 4

(d) Explain Maxwell-Boltzman distribution.

- (e) Write a note on white dwary stars.
- (f) Explain 1st and 2nd order phase transitions.

Or

- 2. Answer all questions from the following: 2 x 8
 - (a) Define classical ideal gas.
 - (b) Define ensemble.
 - (c) What is density matrix?
 - (d) State third law of thermodynamics.
 - (e) What is white dwary star?
 - (f) What is phase transition?
 - (g) Define ideal base gas.
 - (h) Define partition function.

SECTION - B

Answer all questions:

16 x 4

3. (a) Define the three types of ensembles and

explain them. Compare and contrast the properties of ensembles.

Or

- (b) What is Gibb's paradox? Explain how it was resolved. Discuss the equivalence of canonical and grand canonical ensemble.
- (a) State and explain Liouville's theorem in quantum statistical mechanics and discuss the ideal gas in grand cononical ensemble.

Or

- (b) Derive expression for B-E and F-D distributions.
- 5. (a) Obtain the equation of state of ideal Fermi gas.

Or

(b) Write a detailed note on Pauli paramagnetism.